Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.utils.data | |
from librosa.filters import mel as librosa_mel_fn | |
from scipy.io.wavfile import read | |
MAX_WAV_VALUE = 32768.0 | |
def load_wav(full_path): | |
sampling_rate, data = read(full_path) | |
return data, sampling_rate | |
def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) | |
def dynamic_range_decompression(x, C=1): | |
return np.exp(x) / C | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
output = dynamic_range_compression_torch(magnitudes) | |
return output | |
def spectral_de_normalize_torch(magnitudes): | |
output = dynamic_range_decompression_torch(magnitudes) | |
return output | |
mel_basis = {} | |
hann_window = {} | |
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): | |
if torch.min(y) < -1.0: | |
print("min value is ", torch.min(y)) | |
if torch.max(y) > 1.0: | |
print("max value is ", torch.max(y)) | |
global mel_basis, hann_window # pylint: disable=global-statement | |
if f"{str(fmax)}_{str(y.device)}" not in mel_basis: | |
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) | |
mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device) | |
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect" | |
) | |
y = y.squeeze(1) | |
spec = torch.view_as_real( | |
torch.stft( | |
y, | |
n_fft, | |
hop_length=hop_size, | |
win_length=win_size, | |
window=hann_window[str(y.device)], | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True, | |
) | |
) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) | |
spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec) | |
spec = spectral_normalize_torch(spec) | |
return spec | |