Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
"""MS-STFT discriminator, provided here for reference.""" | |
import typing as tp | |
import torch | |
import torchaudio | |
from einops import rearrange | |
from torch import nn | |
from academicodec.modules import NormConv2d | |
FeatureMapType = tp.List[torch.Tensor] | |
LogitsType = torch.Tensor | |
DiscriminatorOutput = tp.Tuple[tp.List[LogitsType], tp.List[FeatureMapType]] | |
def get_2d_padding(kernel_size: tp.Tuple[int, int], | |
dilation: tp.Tuple[int, int]=(1, 1)): | |
return (((kernel_size[0] - 1) * dilation[0]) // 2, ( | |
(kernel_size[1] - 1) * dilation[1]) // 2) | |
class DiscriminatorSTFT(nn.Module): | |
"""STFT sub-discriminator. | |
Args: | |
filters (int): Number of filters in convolutions | |
in_channels (int): Number of input channels. Default: 1 | |
out_channels (int): Number of output channels. Default: 1 | |
n_fft (int): Size of FFT for each scale. Default: 1024 | |
hop_length (int): Length of hop between STFT windows for each scale. Default: 256 | |
kernel_size (tuple of int): Inner Conv2d kernel sizes. Default: ``(3, 9)`` | |
stride (tuple of int): Inner Conv2d strides. Default: ``(1, 2)`` | |
dilations (list of int): Inner Conv2d dilation on the time dimension. Default: ``[1, 2, 4]`` | |
win_length (int): Window size for each scale. Default: 1024 | |
normalized (bool): Whether to normalize by magnitude after stft. Default: True | |
norm (str): Normalization method. Default: `'weight_norm'` | |
activation (str): Activation function. Default: `'LeakyReLU'` | |
activation_params (dict): Parameters to provide to the activation function. | |
growth (int): Growth factor for the filters. Default: 1 | |
""" | |
def __init__(self, | |
filters: int, | |
in_channels: int=1, | |
out_channels: int=1, | |
n_fft: int=1024, | |
hop_length: int=256, | |
win_length: int=1024, | |
max_filters: int=1024, | |
filters_scale: int=1, | |
kernel_size: tp.Tuple[int, int]=(3, 9), | |
dilations: tp.List=[1, 2, 4], | |
stride: tp.Tuple[int, int]=(1, 2), | |
normalized: bool=True, | |
norm: str='weight_norm', | |
activation: str='LeakyReLU', | |
activation_params: dict={'negative_slope': 0.2}): | |
super().__init__() | |
assert len(kernel_size) == 2 | |
assert len(stride) == 2 | |
self.filters = filters | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.normalized = normalized | |
self.activation = getattr(torch.nn, activation)(**activation_params) | |
self.spec_transform = torchaudio.transforms.Spectrogram( | |
n_fft=self.n_fft, | |
hop_length=self.hop_length, | |
win_length=self.win_length, | |
window_fn=torch.hann_window, | |
normalized=self.normalized, | |
center=False, | |
pad_mode=None, | |
power=None) | |
spec_channels = 2 * self.in_channels | |
self.convs = nn.ModuleList() | |
self.convs.append( | |
NormConv2d( | |
spec_channels, | |
self.filters, | |
kernel_size=kernel_size, | |
padding=get_2d_padding(kernel_size))) | |
in_chs = min(filters_scale * self.filters, max_filters) | |
for i, dilation in enumerate(dilations): | |
out_chs = min((filters_scale**(i + 1)) * self.filters, max_filters) | |
self.convs.append( | |
NormConv2d( | |
in_chs, | |
out_chs, | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=(dilation, 1), | |
padding=get_2d_padding(kernel_size, (dilation, 1)), | |
norm=norm)) | |
in_chs = out_chs | |
out_chs = min((filters_scale**(len(dilations) + 1)) * self.filters, | |
max_filters) | |
self.convs.append( | |
NormConv2d( | |
in_chs, | |
out_chs, | |
kernel_size=(kernel_size[0], kernel_size[0]), | |
padding=get_2d_padding((kernel_size[0], kernel_size[0])), | |
norm=norm)) | |
self.conv_post = NormConv2d( | |
out_chs, | |
self.out_channels, | |
kernel_size=(kernel_size[0], kernel_size[0]), | |
padding=get_2d_padding((kernel_size[0], kernel_size[0])), | |
norm=norm) | |
def forward(self, x: torch.Tensor): | |
fmap = [] | |
# print('x ', x.shape) | |
z = self.spec_transform(x) # [B, 2, Freq, Frames, 2] | |
# print('z ', z.shape) | |
z = torch.cat([z.real, z.imag], dim=1) | |
# print('cat_z ', z.shape) | |
z = rearrange(z, 'b c w t -> b c t w') | |
for i, layer in enumerate(self.convs): | |
z = layer(z) | |
z = self.activation(z) | |
# print('z i', i, z.shape) | |
fmap.append(z) | |
z = self.conv_post(z) | |
# print('logit ', z.shape) | |
return z, fmap | |
class MultiScaleSTFTDiscriminator(nn.Module): | |
"""Multi-Scale STFT (MS-STFT) discriminator. | |
Args: | |
filters (int): Number of filters in convolutions | |
in_channels (int): Number of input channels. Default: 1 | |
out_channels (int): Number of output channels. Default: 1 | |
n_ffts (Sequence[int]): Size of FFT for each scale | |
hop_lengths (Sequence[int]): Length of hop between STFT windows for each scale | |
win_lengths (Sequence[int]): Window size for each scale | |
**kwargs: additional args for STFTDiscriminator | |
""" | |
def __init__(self, | |
filters: int, | |
in_channels: int=1, | |
out_channels: int=1, | |
n_ffts: tp.List[int]=[1024, 2048, 512, 256, 128], | |
hop_lengths: tp.List[int]=[256, 512, 128, 64, 32], | |
win_lengths: tp.List[int]=[1024, 2048, 512, 256, 128], | |
**kwargs): | |
super().__init__() | |
assert len(n_ffts) == len(hop_lengths) == len(win_lengths) | |
self.discriminators = nn.ModuleList([ | |
DiscriminatorSTFT( | |
filters, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
n_fft=n_ffts[i], | |
win_length=win_lengths[i], | |
hop_length=hop_lengths[i], | |
**kwargs) for i in range(len(n_ffts)) | |
]) | |
self.num_discriminators = len(self.discriminators) | |
def forward(self, x: torch.Tensor) -> DiscriminatorOutput: | |
logits = [] | |
fmaps = [] | |
for disc in self.discriminators: | |
logit, fmap = disc(x) | |
logits.append(logit) | |
fmaps.append(fmap) | |
return logits, fmaps | |
def test(): | |
disc = MultiScaleSTFTDiscriminator(filters=32) | |
y = torch.randn(1, 1, 24000) | |
y_hat = torch.randn(1, 1, 24000) | |
y_disc_r, fmap_r = disc(y) | |
y_disc_gen, fmap_gen = disc(y_hat) | |
assert len(y_disc_r) == len(y_disc_gen) == len(fmap_r) == len( | |
fmap_gen) == disc.num_discriminators | |
assert all([len(fm) == 5 for fm in fmap_r + fmap_gen]) | |
assert all( | |
[list(f.shape)[:2] == [1, 32] for fm in fmap_r + fmap_gen for f in fm]) | |
assert all([len(logits.shape) == 4 for logits in y_disc_r + y_disc_gen]) | |
if __name__ == '__main__': | |
test() | |