ljy266987
add lfs
12bfd03
raw
history blame
4.22 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Torch distributed utilities."""
import typing as tp
import torch
def rank():
if torch.distributed.is_initialized():
return torch.distributed.get_rank()
else:
return 0
def world_size():
if torch.distributed.is_initialized():
return torch.distributed.get_world_size()
else:
return 1
def is_distributed():
return world_size() > 1
def all_reduce(tensor: torch.Tensor, op=torch.distributed.ReduceOp.SUM):
if is_distributed():
return torch.distributed.all_reduce(tensor, op)
def _is_complex_or_float(tensor):
return torch.is_floating_point(tensor) or torch.is_complex(tensor)
def _check_number_of_params(params: tp.List[torch.Tensor]):
# utility function to check that the number of params in all workers is the same,
# and thus avoid a deadlock with distributed all reduce.
if not is_distributed() or not params:
return
#print('params[0].device ', params[0].device)
tensor = torch.tensor(
[len(params)], device=params[0].device, dtype=torch.long)
all_reduce(tensor)
if tensor.item() != len(params) * world_size():
# If not all the workers have the same number, for at least one of them,
# this inequality will be verified.
raise RuntimeError(
f"Mismatch in number of params: ours is {len(params)}, "
"at least one worker has a different one.")
def broadcast_tensors(tensors: tp.Iterable[torch.Tensor], src: int=0):
"""Broadcast the tensors from the given parameters to all workers.
This can be used to ensure that all workers have the same model to start with.
"""
if not is_distributed():
return
tensors = [tensor for tensor in tensors if _is_complex_or_float(tensor)]
_check_number_of_params(tensors)
handles = []
for tensor in tensors:
# src = int(rank()) # added code
handle = torch.distributed.broadcast(
tensor.data, src=src, async_op=True)
handles.append(handle)
for handle in handles:
handle.wait()
def sync_buffer(buffers, average=True):
"""
Sync grad for buffers. If average is False, broadcast instead of averaging.
"""
if not is_distributed():
return
handles = []
for buffer in buffers:
if torch.is_floating_point(buffer.data):
if average:
handle = torch.distributed.all_reduce(
buffer.data,
op=torch.distributed.ReduceOp.SUM,
async_op=True)
else:
handle = torch.distributed.broadcast(
buffer.data, src=0, async_op=True)
handles.append((buffer, handle))
for buffer, handle in handles:
handle.wait()
if average:
buffer.data /= world_size
def sync_grad(params):
"""
Simpler alternative to DistributedDataParallel, that doesn't rely
on any black magic. For simple models it can also be as fast.
Just call this on your model parameters after the call to backward!
"""
if not is_distributed():
return
handles = []
for p in params:
if p.grad is not None:
handle = torch.distributed.all_reduce(
p.grad.data, op=torch.distributed.ReduceOp.SUM, async_op=True)
handles.append((p, handle))
for p, handle in handles:
handle.wait()
p.grad.data /= world_size()
def average_metrics(metrics: tp.Dict[str, float], count=1.):
"""Average a dictionary of metrics across all workers, using the optional
`count` as unormalized weight.
"""
if not is_distributed():
return metrics
keys, values = zip(*metrics.items())
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tensor = torch.tensor(
list(values) + [1], device=device, dtype=torch.float32)
tensor *= count
all_reduce(tensor)
averaged = (tensor[:-1] / tensor[-1]).cpu().tolist()
return dict(zip(keys, averaged))