Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
"""Residual vector quantizer implementation.""" | |
import math | |
import typing as tp | |
from dataclasses import dataclass | |
from dataclasses import field | |
import torch | |
from torch import nn | |
from academicodec.quantization.core_vq import ResidualVectorQuantization | |
class QuantizedResult: | |
quantized: torch.Tensor | |
codes: torch.Tensor | |
bandwidth: torch.Tensor # bandwidth in kb/s used, per batch item. | |
penalty: tp.Optional[torch.Tensor] = None | |
metrics: dict = field(default_factory=dict) | |
class ResidualVectorQuantizer(nn.Module): | |
"""Residual Vector Quantizer. | |
Args: | |
dimension (int): Dimension of the codebooks. | |
n_q (int): Number of residual vector quantizers used. | |
bins (int): Codebook size. | |
decay (float): Decay for exponential moving average over the codebooks. | |
kmeans_init (bool): Whether to use kmeans to initialize the codebooks. | |
kmeans_iters (int): Number of iterations used for kmeans initialization. | |
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
that have an exponential moving average cluster size less than the specified threshold with | |
randomly selected vector from the current batch. | |
""" | |
def __init__( | |
self, | |
dimension: int=256, | |
n_q: int=8, | |
bins: int=1024, | |
decay: float=0.99, | |
kmeans_init: bool=True, | |
kmeans_iters: int=50, | |
threshold_ema_dead_code: int=2, ): | |
super().__init__() | |
self.n_q = n_q | |
self.dimension = dimension | |
self.bins = bins | |
self.decay = decay | |
self.kmeans_init = kmeans_init | |
self.kmeans_iters = kmeans_iters | |
self.threshold_ema_dead_code = threshold_ema_dead_code | |
self.vq = ResidualVectorQuantization( | |
dim=self.dimension, | |
codebook_size=self.bins, | |
num_quantizers=self.n_q, | |
decay=self.decay, | |
kmeans_init=self.kmeans_init, | |
kmeans_iters=self.kmeans_iters, | |
threshold_ema_dead_code=self.threshold_ema_dead_code, ) | |
def forward(self, | |
x: torch.Tensor, | |
sample_rate: int, | |
bandwidth: tp.Optional[float]=None) -> QuantizedResult: | |
"""Residual vector quantization on the given input tensor. | |
Args: | |
x (torch.Tensor): Input tensor. | |
sample_rate (int): Sample rate of the input tensor. | |
bandwidth (float): Target bandwidth. | |
Returns: | |
QuantizedResult: | |
The quantized (or approximately quantized) representation with | |
the associated bandwidth and any penalty term for the loss. | |
""" | |
bw_per_q = self.get_bandwidth_per_quantizer(sample_rate) | |
n_q = self.get_num_quantizers_for_bandwidth(sample_rate, bandwidth) | |
quantized, codes, commit_loss = self.vq(x, n_q=n_q) | |
bw = torch.tensor(n_q * bw_per_q).to(x) | |
return quantized, codes, bw, torch.mean(commit_loss) | |
#return QuantizedResult(quantized, codes, bw, penalty=torch.mean(commit_loss)) | |
def get_num_quantizers_for_bandwidth( | |
self, sample_rate: int, bandwidth: tp.Optional[float]=None) -> int: | |
"""Return n_q based on specified target bandwidth. | |
""" | |
bw_per_q = self.get_bandwidth_per_quantizer(sample_rate) | |
n_q = self.n_q | |
if bandwidth and bandwidth > 0.: | |
n_q = int(max(1, math.floor(bandwidth / bw_per_q))) | |
return n_q | |
def get_bandwidth_per_quantizer(self, sample_rate: int): | |
"""Return bandwidth per quantizer for a given input sample rate. | |
""" | |
return math.log2(self.bins) * sample_rate / 1000 | |
def encode(self, | |
x: torch.Tensor, | |
sample_rate: int, | |
bandwidth: tp.Optional[float]=None, | |
st: tp.Optional[int]=None) -> torch.Tensor: | |
"""Encode a given input tensor with the specified sample rate at the given bandwidth. | |
The RVQ encode method sets the appropriate number of quantizer to use | |
and returns indices for each quantizer. | |
""" | |
n_q = self.get_num_quantizers_for_bandwidth(sample_rate, bandwidth) | |
st = st or 0 | |
codes = self.vq.encode(x, n_q=n_q, st=st) | |
return codes | |
def decode(self, codes: torch.Tensor) -> torch.Tensor: | |
"""Decode the given codes to the quantized representation. | |
""" | |
quantized = self.vq.decode(codes) | |
return quantized | |