Spaces:
Runtime error
Runtime error
CosyVoice-300M
/
third_party
/AcademiCodec
/academicodec
/models
/encodec
/distributed
/distributed.py
# ------------------------------------------ | |
# Diffsound | |
# code based https://github.com/cientgu/VQ-Diffusion | |
# ------------------------------------------ | |
import pickle | |
import torch | |
from torch import distributed as dist | |
from torch.utils import data | |
LOCAL_PROCESS_GROUP = None | |
def is_primary(): | |
return get_rank() == 0 | |
def get_rank(): | |
if not dist.is_available(): | |
return 0 | |
if not dist.is_initialized(): | |
return 0 | |
return dist.get_rank() | |
def get_local_rank(): | |
if not dist.is_available(): | |
return 0 | |
if not dist.is_initialized(): | |
return 0 | |
if LOCAL_PROCESS_GROUP is None: | |
raise ValueError("tensorfn.distributed.LOCAL_PROCESS_GROUP is None") | |
return dist.get_rank(group=LOCAL_PROCESS_GROUP) | |
def synchronize(): | |
if not dist.is_available(): | |
return | |
if not dist.is_initialized(): | |
return | |
world_size = dist.get_world_size() | |
if world_size == 1: | |
return | |
dist.barrier() | |
def get_world_size(): | |
if not dist.is_available(): | |
return 1 | |
if not dist.is_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def is_distributed(): | |
raise RuntimeError('Please debug this function!') | |
return get_world_size() > 1 | |
def all_reduce(tensor, op=dist.ReduceOp.SUM, async_op=False): | |
world_size = get_world_size() | |
if world_size == 1: | |
return tensor | |
dist.all_reduce(tensor, op=op, async_op=async_op) | |
return tensor | |
def all_gather(data): | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
buffer = pickle.dumps(data) | |
storage = torch.ByteStorage.from_buffer(buffer) | |
tensor = torch.ByteTensor(storage).to("cuda") | |
local_size = torch.IntTensor([tensor.numel()]).to("cuda") | |
size_list = [torch.IntTensor([1]).to("cuda") for _ in range(world_size)] | |
dist.all_gather(size_list, local_size) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append(torch.ByteTensor(size=(max_size, )).to("cuda")) | |
if local_size != max_size: | |
padding = torch.ByteTensor(size=(max_size - local_size, )).to("cuda") | |
tensor = torch.cat((tensor, padding), 0) | |
dist.all_gather(tensor_list, tensor) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |
def reduce_dict(input_dict, average=True): | |
world_size = get_world_size() | |
if world_size < 2: | |
return input_dict | |
with torch.no_grad(): | |
keys = [] | |
values = [] | |
for k in sorted(input_dict.keys()): | |
keys.append(k) | |
values.append(input_dict[k]) | |
values = torch.stack(values, 0) | |
dist.reduce(values, dst=0) | |
if dist.get_rank() == 0 and average: | |
values /= world_size | |
reduced_dict = {k: v for k, v in zip(keys, values)} | |
return reduced_dict | |
def data_sampler(dataset, shuffle, distributed): | |
if distributed: | |
return data.distributed.DistributedSampler(dataset, shuffle=shuffle) | |
if shuffle: | |
return data.RandomSampler(dataset) | |
else: | |
return data.SequentialSampler(dataset) | |