Spaces:
Runtime error
Runtime error
File size: 20,177 Bytes
12bfd03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
# 与 Encodec_24k_240d main3_ddp.py 相比只有鉴别器不同
import argparse
import itertools
import os
import time
import torch
import torch.distributed as dist
from academicodec.models.encodec.distributed.launch import launch
from academicodec.models.encodec.msstftd import MultiScaleSTFTDiscriminator
from academicodec.models.encodec.net3 import SoundStream
from academicodec.models.soundstream.dataset import NSynthDataset
from academicodec.models.soundstream.loss import criterion_d
from academicodec.models.soundstream.loss import criterion_g
from academicodec.models.soundstream.loss import loss_dis
from academicodec.models.soundstream.loss import loss_g
from academicodec.models.soundstream.models import MultiPeriodDiscriminator
from academicodec.models.soundstream.models import MultiScaleDiscriminator
from academicodec.utils import Logger
from academicodec.utils import seed_everything
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
NODE_RANK = os.environ['INDEX'] if 'INDEX' in os.environ else 0
NODE_RANK = int(NODE_RANK)
MASTER_ADDR, MASTER_PORT = (os.environ['CHIEF_IP'],
22275) if 'CHIEF_IP' in os.environ else (
"127.0.0.1", 29500)
MASTER_PORT = int(MASTER_PORT)
DIST_URL = 'tcp://%s:%s' % (MASTER_ADDR, MASTER_PORT)
NUM_NODE = os.environ['HOST_NUM'] if 'HOST_NUM' in os.environ else 1
def getModelSize(model):
param_size = 0
param_sum = 0
for param in model.parameters():
param_size += param.nelement() * param.element_size()
param_sum += param.nelement()
buffer_size = 0
buffer_sum = 0
for buffer in model.buffers():
buffer_size += buffer.nelement() * buffer.element_size()
buffer_sum += buffer.nelement()
all_size = (param_size + buffer_size) / 1024 / 1024
print('模型总大小为:{:.3f}MB'.format(all_size))
return (param_size, param_sum, buffer_size, buffer_sum, all_size)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--num_node',
type=int,
default=NUM_NODE,
help='number of nodes for distributed training')
parser.add_argument(
'--ngpus_per_node',
type=int,
default=8,
help='number of gpu on one node')
parser.add_argument(
'--node_rank',
type=int,
default=NODE_RANK,
help='node rank for distributed training')
parser.add_argument(
'--dist_url',
type=str,
default=DIST_URL,
help='url used to set up distributed training')
parser.add_argument(
'--gpu',
type=int,
default=None,
help='GPU id to use. If given, only the specific gpu will be'
' used, and ddp will be disabled')
parser.add_argument(
'--local_rank',
default=-1,
type=int,
help='node rank for distributed training')
# args for random
parser.add_argument(
'--seed',
type=int,
default=None,
help='seed for initializing training. ')
parser.add_argument(
'--cudnn_deterministic',
action='store_true',
help='set cudnn.deterministic True')
parser.add_argument(
'--tensorboard',
action='store_true',
help='use tensorboard for logging')
# args for training
parser.add_argument(
'--LAMBDA_ADV',
type=float,
default=1,
help='hyper-parameter for adver loss')
parser.add_argument(
'--LAMBDA_FEAT',
type=float,
default=1,
help='hyper-parameter for feat loss')
parser.add_argument(
'--LAMBDA_REC',
type=float,
default=1,
help='hyper-parameter for rec loss')
parser.add_argument(
'--LAMBDA_COM',
type=float,
default=1000,
help='hyper-parameter for commit loss')
parser.add_argument(
'--N_EPOCHS', type=int, default=100, help='Total training epoch')
parser.add_argument(
'--st_epoch', type=int, default=0, help='start training epoch')
parser.add_argument(
'--global_step', type=int, default=0, help='record the global step')
parser.add_argument('--discriminator_iter_start', type=int, default=500)
parser.add_argument('--BATCH_SIZE', type=int, default=2, help='batch size')
parser.add_argument(
'--PATH',
type=str,
default='model_path/',
help='The path to save the model')
parser.add_argument('--sr', type=int, default=24000, help='sample rate')
parser.add_argument(
'--print_freq', type=int, default=10, help='the print number')
parser.add_argument(
'--save_dir', type=str, default='log', help='log save path')
parser.add_argument(
'--train_data_path',
type=str,
default='path_to_wavs',
help='training data')
parser.add_argument(
'--valid_data_path',
type=str,
default='path_to_val_wavs',
help='training data')
parser.add_argument(
'--resume', action='store_true', help='whether re-train model')
parser.add_argument(
'--resume_path', type=str, default='path_to_resume', help='resume_path')
parser.add_argument(
'--ratios',
type=int,
nargs='+',
# probs(ratios) = hop_size
default=[8, 5, 4, 2],
help='ratios of SoundStream, shoud be set for different hop_size (32d, 320, 240d, ...)'
)
parser.add_argument(
'--target_bandwidths',
type=float,
nargs='+',
# default for 16k_320d
default=[1, 1.5, 2, 4, 6, 12],
help='target_bandwidths of net3.py')
args = parser.parse_args()
time_str = time.strftime('%Y-%m-%d-%H-%M')
if args.resume:
args.PATH = args.resume_path # direcly use the old model path
else:
args.PATH = os.path.join(args.PATH, time_str)
args.save_dir = os.path.join(args.save_dir, time_str)
os.makedirs(args.PATH, exist_ok=True)
return args
def get_input(x):
x = x.to(memory_format=torch.contiguous_format)
return x.float()
def main():
args = get_args()
if args.seed is not None or args.cudnn_deterministic:
seed_everything(args.seed, args.cudnn_deterministic)
if args.num_node == 1:
args.dist_url == "auto"
else:
assert args.num_node > 1
args.ngpus_per_node = torch.cuda.device_count()
args.world_size = args.ngpus_per_node * args.num_node #
launch(
main_worker,
args.ngpus_per_node,
args.num_node,
args.node_rank,
args.dist_url,
args=(args, ))
def main_worker(local_rank, args):
args.local_rank = local_rank
args.global_rank = args.local_rank + args.node_rank * args.ngpus_per_node
args.distributed = args.world_size > 1
#CUDA_VISIBLE_DEVICES = int(args.local_rank)
logger = Logger(args)
# 240倍下采
soundstream = SoundStream(n_filters=32, D=512, ratios=args.ratios)
msd = MultiScaleDiscriminator()
mpd = MultiPeriodDiscriminator()
#print('soundstream ', soundstream)
# assert 1==2
stft_disc = MultiScaleSTFTDiscriminator(filters=32)
getModelSize(soundstream)
getModelSize(msd)
getModelSize(mpd)
getModelSize(stft_disc)
if args.distributed:
soundstream = torch.nn.SyncBatchNorm.convert_sync_batchnorm(soundstream)
stft_disc = torch.nn.SyncBatchNorm.convert_sync_batchnorm(stft_disc)
msd = torch.nn.SyncBatchNorm.convert_sync_batchnorm(msd)
mpd = torch.nn.SyncBatchNorm.convert_sync_batchnorm(mpd)
# torch.distributed.barrier()
args.device = torch.device('cuda', args.local_rank)
soundstream.to(args.device)
stft_disc.to(args.device)
msd.to(args.device)
mpd.to(args.device)
if args.distributed:
soundstream = DDP(
soundstream,
device_ids=[args.local_rank],
find_unused_parameters=True
) # device_ids=[args.local_rank], output_device=args.local_rank
stft_disc = DDP(stft_disc,
device_ids=[args.local_rank],
find_unused_parameters=True)
msd = DDP(msd,
device_ids=[args.local_rank],
find_unused_parameters=True)
mpd = DDP(mpd,
device_ids=[args.local_rank],
find_unused_parameters=True)
train_dataset = NSynthDataset(audio_dir=args.train_data_path)
valid_dataset = NSynthDataset(audio_dir=args.valid_data_path)
args.sr = train_dataset.sr
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, drop_last=True, shuffle=True)
valid_sampler = torch.utils.data.distributed.DistributedSampler(
valid_dataset)
else:
train_sampler = None
valid_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.BATCH_SIZE,
num_workers=8,
sampler=train_sampler)
valid_loader = torch.utils.data.DataLoader(
valid_dataset,
batch_size=args.BATCH_SIZE,
num_workers=8,
sampler=valid_sampler)
optimizer_g = torch.optim.AdamW(
soundstream.parameters(), lr=3e-4, betas=(0.5, 0.9))
lr_scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optimizer_g, gamma=0.999)
optimizer_d = torch.optim.AdamW(
itertools.chain(stft_disc.parameters(),
msd.parameters(), mpd.parameters()),
lr=3e-4,
betas=(0.5, 0.9))
lr_scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optimizer_d, gamma=0.999)
if args.resume:
latest_info = torch.load(args.resume_path + '/latest.pth')
args.st_epoch = latest_info['epoch']
soundstream.load_state_dict(latest_info['soundstream'])
stft_disc.load_state_dict(latest_info['stft_disc'])
mpd.load_state_dict(latest_info['mpd'])
msd.load_state_dict(latest_info['msd'])
optimizer_g.load_state_dict(latest_info['optimizer_g'])
lr_scheduler_g.load_state_dict(latest_info['lr_scheduler_g'])
optimizer_d.load_state_dict(latest_info['optimizer_d'])
lr_scheduler_d.load_state_dict(latest_info['lr_scheduler_d'])
train(args, soundstream, stft_disc, msd, mpd, train_loader, valid_loader,
optimizer_g, optimizer_d, lr_scheduler_g, lr_scheduler_d, logger)
def train(args, soundstream, stft_disc, msd, mpd, train_loader, valid_loader,
optimizer_g, optimizer_d, lr_scheduler_g, lr_scheduler_d, logger):
print('args ', args.global_rank)
best_val_loss = float("inf")
best_val_epoch = -1
global_step = 0
for epoch in range(args.st_epoch, args.N_EPOCHS + 1):
soundstream.train()
stft_disc.train()
msd.train()
mpd.train()
train_loss_d = 0.0
train_adv_g_loss = 0.0
train_feat_loss = 0.0
train_rec_loss = 0.0
train_loss_g = 0.0
train_commit_loss = 0.0
k_iter = 0
if args.distributed:
train_loader.sampler.set_epoch(epoch)
for x in tqdm(train_loader):
x = x.to(args.device)
k_iter += 1
global_step += 1 # record the global step
for optimizer_idx in [0, 1]: # we have two optimizer
x_wav = get_input(x)
G_x, commit_loss, last_layer = soundstream(x_wav)
if optimizer_idx == 0:
# update generator
y_disc_r, fmap_r = stft_disc(x_wav.contiguous())
y_disc_gen, fmap_gen = stft_disc(G_x.contiguous())
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(
x_wav.contiguous(), G_x.contiguous())
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(
x_wav.contiguous(), G_x.contiguous())
total_loss_g, rec_loss, adv_g_loss, feat_loss, d_weight = loss_g(
commit_loss,
x_wav,
G_x,
fmap_r,
fmap_gen,
y_disc_r,
y_disc_gen,
global_step,
y_df_hat_r,
y_df_hat_g,
y_ds_hat_r,
y_ds_hat_g,
fmap_f_r,
fmap_f_g,
fmap_s_r,
fmap_s_g,
last_layer=last_layer,
is_training=True,
args=args)
train_commit_loss += commit_loss
train_loss_g += total_loss_g.item()
train_adv_g_loss += adv_g_loss.item()
train_feat_loss += feat_loss.item()
train_rec_loss += rec_loss.item()
optimizer_g.zero_grad()
total_loss_g.backward()
optimizer_g.step()
else:
# update discriminator
y_disc_r_det, fmap_r_det = stft_disc(x.detach())
y_disc_gen_det, fmap_gen_det = stft_disc(G_x.detach())
# MPD
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(
x.detach(), G_x.detach())
#MSD
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(
x.detach(), G_x.detach())
loss_d = loss_dis(
y_disc_r_det, y_disc_gen_det, fmap_r_det, fmap_gen_det,
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g, y_ds_hat_r,
y_ds_hat_g, fmap_s_r, fmap_s_g, global_step, args)
train_loss_d += loss_d.item()
optimizer_d.zero_grad()
loss_d.backward()
optimizer_d.step()
message = '<epoch:{:d}, iter:{:d}, total_loss_g:{:.4f}, adv_g_loss:{:.4f}, feat_loss:{:.4f}, rec_loss:{:.4f}, commit_loss:{:.4f}, loss_d:{:.4f}, d_weight: {:.4f}>'.format(
epoch, k_iter,
total_loss_g.item(),
adv_g_loss.item(),
feat_loss.item(),
rec_loss.item(),
commit_loss.item(), loss_d.item(), d_weight.item())
if k_iter % args.print_freq == 0:
logger.log_info(message)
lr_scheduler_g.step()
lr_scheduler_d.step()
message = '<epoch:{:d}, <total_loss_g_train:{:.4f}, recon_loss_train:{:.4f}, adversarial_loss_train:{:.4f}, feature_loss_train:{:.4f}, commit_loss_train:{:.4f}>'.format(
epoch, train_loss_g / len(train_loader), train_rec_loss /
len(train_loader), train_adv_g_loss / len(train_loader),
train_feat_loss / len(train_loader),
train_commit_loss / len(train_loader))
logger.log_info(message)
with torch.no_grad():
soundstream.eval()
stft_disc.eval()
mpd.eval()
msd.eval()
valid_loss_d = 0.0
valid_loss_g = 0.0
valid_commit_loss = 0.0
valid_adv_g_loss = 0.0
valid_feat_loss = 0.0
valid_rec_loss = 0.0
if args.distributed:
valid_loader.sampler.set_epoch(epoch)
for x in tqdm(valid_loader):
x = x.to(args.device)
for optimizer_idx in [0, 1]:
x_wav = get_input(x)
G_x, commit_loss, _ = soundstream(x_wav)
if optimizer_idx == 0:
valid_commit_loss += commit_loss
y_disc_r, fmap_r = stft_disc(x_wav.contiguous())
y_disc_gen, fmap_gen = stft_disc(G_x.contiguous())
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(
x_wav.contiguous(), G_x.contiguous())
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(
x_wav.contiguous(), G_x.contiguous())
total_loss_g, adv_g_loss, feat_loss, rec_loss = criterion_g(
commit_loss,
x_wav,
G_x,
fmap_r,
fmap_gen,
y_disc_r,
y_disc_gen,
y_df_hat_r,
y_df_hat_g,
fmap_f_r,
fmap_f_g,
y_ds_hat_r,
y_ds_hat_g,
fmap_s_r,
fmap_s_g,
args=args)
valid_loss_g += total_loss_g.item()
valid_adv_g_loss += adv_g_loss.item()
valid_feat_loss += feat_loss.item()
valid_rec_loss += rec_loss.item()
else:
y_disc_r_det, fmap_r_det = stft_disc(
x_wav.contiguous().detach())
y_disc_gen_det, fmap_gen_det = stft_disc(
G_x.contiguous().detach())
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(
x_wav.contiguous().detach(),
G_x.contiguous().detach())
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(
x_wav.contiguous().detach(),
G_x.contiguous().detach())
loss_d = criterion_d(y_disc_r_det, y_disc_gen_det,
fmap_r_det, fmap_gen_det,
y_df_hat_r, y_df_hat_g, fmap_f_r,
fmap_f_g, y_ds_hat_r, y_ds_hat_g,
fmap_s_r, fmap_s_g)
valid_loss_d += loss_d.item()
if dist.get_rank() == 0:
best_model = soundstream.state_dict().copy()
latest_model_soundstream = soundstream.state_dict().copy()
latest_model_dis = stft_disc.state_dict().copy()
latest_mpd = mpd.state_dict().copy()
latest_msd = msd.state_dict().copy()
if valid_rec_loss < best_val_loss:
best_val_loss = valid_rec_loss
best_val_epoch = epoch
torch.save(best_model,
args.PATH + '/best_' + str(epoch) + '.pth')
latest_save = {}
latest_save['soundstream'] = latest_model_soundstream
latest_save['stft_disc'] = latest_model_dis
latest_save['mpd'] = latest_mpd
latest_save['msd'] = latest_msd
latest_save['epoch'] = epoch
latest_save['optimizer_g'] = optimizer_g.state_dict()
latest_save['optimizer_d'] = optimizer_d.state_dict()
latest_save['lr_scheduler_g'] = lr_scheduler_g.state_dict()
latest_save['lr_scheduler_d'] = lr_scheduler_d.state_dict()
torch.save(latest_save, args.PATH + '/latest.pth')
message = '<epoch:{:d}, total_loss_g_valid:{:.4f}, recon_loss_valid:{:.4f}, adversarial_loss_valid:{:.4f}, feature_loss_valid:{:.4f}, commit_loss_valid:{:.4f}, valid_loss_d:{:.4f}, best_epoch:{:d}>'.format(
epoch, valid_loss_g / len(valid_loader), valid_rec_loss /
len(valid_loader), valid_adv_g_loss / len(valid_loader),
valid_feat_loss / len(valid_loader),
valid_commit_loss / len(valid_loader),
valid_loss_d / len(valid_loader), best_val_epoch)
logger.log_info(message)
if __name__ == '__main__':
main()
|