File size: 19,702 Bytes
12bfd03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import argparse
import itertools
import os
import time

import torch
import torch.distributed as dist
from academicodec.models.encodec.dataset import NSynthDataset
from academicodec.models.encodec.loss import criterion_d
from academicodec.models.encodec.loss import criterion_g
from academicodec.models.encodec.loss import loss_dis
from academicodec.models.encodec.loss import loss_g
from academicodec.models.encodec.msstftd import MultiScaleSTFTDiscriminator
from academicodec.models.encodec.net3 import SoundStream
from academicodec.models.soundstream.models import MultiPeriodDiscriminator
from academicodec.models.soundstream.models import MultiScaleDiscriminator
from academicodec.utils import Logger
from academicodec.utils import seed_everything
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm


def getModelSize(model):
    param_size = 0
    param_sum = 0
    for param in model.parameters():
        param_size += param.nelement() * param.element_size()
        param_sum += param.nelement()
    buffer_size = 0
    buffer_sum = 0
    for buffer in model.buffers():
        buffer_size += buffer.nelement() * buffer.element_size()
        buffer_sum += buffer.nelement()
    all_size = (param_size + buffer_size) / 1024 / 1024
    print('模型总大小为:{:.3f}MB'.format(all_size))
    return (param_size, param_sum, buffer_size, buffer_sum, all_size)


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--local_rank',
        default=-1,
        type=int,
        help='node rank for distributed training')
    # args for random
    parser.add_argument(
        '--seed',
        type=int,
        default=6666,
        help='seed for initializing training. ')
    parser.add_argument(
        '--cudnn_deterministic',
        action='store_true',
        help='set cudnn.deterministic True')
    parser.add_argument(
        '--tensorboard',
        action='store_true',
        help='use tensorboard for logging')

    # args for training
    parser.add_argument(
        '--LAMBDA_WAV',
        type=float,
        default=100,
        help='hyper-parameter for wav time-domain loss')
    parser.add_argument(
        '--LAMBDA_ADV',
        type=float,
        default=1,
        help='hyper-parameter for adver loss')
    parser.add_argument(
        '--LAMBDA_FEAT',
        type=float,
        default=1,
        help='hyper-parameter for feat loss')
    parser.add_argument(
        '--LAMBDA_REC',
        type=float,
        default=1,
        help='hyper-parameter for rec loss')
    parser.add_argument(
        '--LAMBDA_COM',
        type=float,
        default=1000,
        help='hyper-parameter for commit loss')
    parser.add_argument(
        '--N_EPOCHS', type=int, default=100, help='Total training epoch')
    parser.add_argument(
        '--st_epoch', type=int, default=0, help='start training epoch')
    parser.add_argument(
        '--global_step', type=int, default=0, help='record the global step')
    parser.add_argument('--discriminator_iter_start', type=int, default=500)
    parser.add_argument('--BATCH_SIZE', type=int, default=10, help='batch size')
    parser.add_argument(
        '--PATH', type=str, default='model_path', help='model save path')
    parser.add_argument('--sr', type=int, default=16000, help='sample rate')
    parser.add_argument(
        '--print_freq', type=int, default=10, help='the print number')
    parser.add_argument(
        '--save_dir', type=str, default='log', help='log save path')
    parser.add_argument(
        '--train_data_path',
        type=str,
        # default='/apdcephfs_cq2/share_1297902/speech_user/shaunxliu/dongchao/code4/InstructTTS2/data_process/soundstream_data/train16k.lst', 
        default="/apdcephfs_cq2/share_1297902/speech_user/shaunxliu/data/codec_data_24k/train_valid_lists/train.lst",
        help='training data')
    parser.add_argument(
        '--valid_data_path',
        type=str,
        # default='/apdcephfs_cq2/share_1297902/speech_user/shaunxliu/dongchao/code4/InstructTTS2/data_process/soundstream_data/val16k.lst', 
        default="/apdcephfs_cq2/share_1297902/speech_user/shaunxliu/data/codec_data_24k/train_valid_lists/valid_256.lst",
        help='validation data')
    parser.add_argument(
        '--resume', action='store_true', help='whether re-train model')
    parser.add_argument(
        '--resume_path', type=str, default=None, help='resume_path')
    parser.add_argument(
        '--ratios',
        type=int,
        nargs='+',
        # probs(ratios) = hop_size
        default=[8, 5, 4, 2],
        help='ratios of SoundStream, shoud be set for different hop_size (32d, 320, 240d, ...)'
    )
    parser.add_argument(
        '--target_bandwidths',
        type=float,
        nargs='+',
        # default for 16k_320d
        default=[1, 1.5, 2, 4, 6, 12],
        help='target_bandwidths of net3.py')
    args = parser.parse_args()
    time_str = time.strftime('%Y-%m-%d-%H-%M')
    if args.resume:
        args.PATH = args.resume_path  # direcly use the old model path
    else:
        args.PATH = os.path.join(args.PATH, time_str)
    args.save_dir = os.path.join(args.save_dir, time_str)
    os.makedirs(args.PATH, exist_ok=True)
    return args


def get_input(x):
    x = x.to(memory_format=torch.contiguous_format)
    return x.float()


def main():
    args = get_args()
    if args.seed is not None or args.cudnn_deterministic:
        seed_everything(args.seed, args.cudnn_deterministic)
    args.ngpus_per_node = torch.cuda.device_count()
    main_worker(args.local_rank, args)


def main_worker(local_rank, args):
    rank = local_rank
    args.local_rank = local_rank
    args.global_rank = local_rank
    args.distributed = args.ngpus_per_node > 1

    if args.ngpus_per_node > 1:
        from torch.distributed import init_process_group
        torch.cuda.set_device(local_rank)
        init_process_group(backend='nccl')

    #CUDA_VISIBLE_DEVICES = int(args.local_rank)
    logger = Logger(args)
    soundstream = SoundStream(
        n_filters=32, 
        D=512, 
        ratios=args.ratios,
        sample_rate=args.sr,
        target_bandwidths=args.target_bandwidths)
    msd = MultiScaleDiscriminator()
    mpd = MultiPeriodDiscriminator()
    stft_disc = MultiScaleSTFTDiscriminator(filters=32)

    if logger.is_primary:
        getModelSize(soundstream)
        getModelSize(msd)
        getModelSize(mpd)
        getModelSize(stft_disc)

    if args.distributed:
        soundstream = torch.nn.SyncBatchNorm.convert_sync_batchnorm(soundstream)
        stft_disc = torch.nn.SyncBatchNorm.convert_sync_batchnorm(stft_disc)
        msd = torch.nn.SyncBatchNorm.convert_sync_batchnorm(msd)
        mpd = torch.nn.SyncBatchNorm.convert_sync_batchnorm(mpd)

    # torch.distributed.barrier()
    args.device = torch.device('cuda', args.local_rank)
    soundstream.to(args.device)
    stft_disc.to(args.device)
    msd.to(args.device)
    mpd.to(args.device)
    find_unused_parameters = False
    if args.distributed:
        soundstream = DDP(
            soundstream,
            device_ids=[args.local_rank],
            find_unused_parameters=find_unused_parameters
        )  # device_ids=[args.local_rank], output_device=args.local_rank
        stft_disc = DDP(stft_disc,
                        device_ids=[args.local_rank],
                        find_unused_parameters=find_unused_parameters)
        msd = DDP(msd,
                  device_ids=[args.local_rank],
                  find_unused_parameters=find_unused_parameters)
        mpd = DDP(mpd,
                  device_ids=[args.local_rank],
                  find_unused_parameters=find_unused_parameters)
    # 这里之后需要看下 sr 的问题,如果输入 wav 的 sr 和 `--sr` 不一致则会有问题
    logger.log_info('Training set')
    train_dataset = NSynthDataset(audio_dir=args.train_data_path)
    logger.log_info('valid set')
    valid_dataset = NSynthDataset(audio_dir=args.valid_data_path)
    args.sr = train_dataset.sr
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_dataset, drop_last=True, shuffle=True)
        valid_sampler = torch.utils.data.distributed.DistributedSampler(
            valid_dataset)
    else:
        train_sampler = None
        valid_sampler = None
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.BATCH_SIZE,
        num_workers=8,
        sampler=train_sampler)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=args.BATCH_SIZE,
        num_workers=8,
        sampler=valid_sampler)
    logger.log_info("Build optimizers and lr-schedulers")
    optimizer_g = torch.optim.AdamW(
        soundstream.parameters(), lr=3e-4, betas=(0.5, 0.9))
    lr_scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
        optimizer_g, gamma=0.999)
    optimizer_d = torch.optim.AdamW(
        itertools.chain(stft_disc.parameters(),
                        msd.parameters(), mpd.parameters()),
        lr=3e-4,
        betas=(0.5, 0.9))
    lr_scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
        optimizer_d, gamma=0.999)
    if args.resume:
        latest_info = torch.load(args.resume_path + '/latest.pth')
        args.st_epoch = latest_info['epoch']
        soundstream.load_state_dict(latest_info['soundstream'])
        stft_disc.load_state_dict(latest_info['stft_disc'])
        mpd.load_state_dict(latest_info['mpd'])
        msd.load_state_dict(latest_info['msd'])
        optimizer_g.load_state_dict(latest_info['optimizer_g'])
        lr_scheduler_g.load_state_dict(latest_info['lr_scheduler_g'])
        optimizer_d.load_state_dict(latest_info['optimizer_d'])
        lr_scheduler_d.load_state_dict(latest_info['lr_scheduler_d'])
    train(args, soundstream, stft_disc, msd, mpd, train_loader, valid_loader,
          optimizer_g, optimizer_d, lr_scheduler_g, lr_scheduler_d, logger)


def train(args, soundstream, stft_disc, msd, mpd, train_loader, valid_loader,
          optimizer_g, optimizer_d, lr_scheduler_g, lr_scheduler_d, logger):
    print('args ', args.global_rank)
    best_val_loss = float("inf")
    best_val_epoch = -1
    global_step = 0
    for epoch in range(args.st_epoch, args.N_EPOCHS + 1):
        soundstream.train()
        stft_disc.train()
        msd.train()
        mpd.train()
        train_loss_d = 0.0
        train_adv_g_loss = 0.0
        train_feat_loss = 0.0
        train_rec_loss = 0.0
        train_loss_g = 0.0
        train_commit_loss = 0.0
        k_iter = 0
        if args.distributed:
            train_loader.sampler.set_epoch(epoch)
        for x in tqdm(train_loader):
            x = x.to(args.device)
            k_iter += 1
            global_step += 1  # record the global step
            for optimizer_idx in [0, 1]:  # we have two optimizer
                x_wav = get_input(x)
                G_x, commit_loss, last_layer = soundstream(x_wav)
                if optimizer_idx == 0:
                    # update generator
                    y_disc_r, fmap_r = stft_disc(x_wav.contiguous())
                    y_disc_gen, fmap_gen = stft_disc(G_x.contiguous())
                    y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(
                        x_wav.contiguous(), G_x.contiguous())
                    y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(
                        x_wav.contiguous(), G_x.contiguous())
                    total_loss_g, rec_loss, adv_g_loss, feat_loss, d_weight = loss_g(
                        commit_loss,
                        x_wav,
                        G_x,
                        fmap_r,
                        fmap_gen,
                        y_disc_r,
                        y_disc_gen,
                        global_step,
                        y_df_hat_r,
                        y_df_hat_g,
                        y_ds_hat_r,
                        y_ds_hat_g,
                        fmap_f_r,
                        fmap_f_g,
                        fmap_s_r,
                        fmap_s_g,
                        last_layer=last_layer,
                        is_training=True,
                        args=args)
                    train_commit_loss += commit_loss.item()
                    train_loss_g += total_loss_g.item()
                    train_adv_g_loss += adv_g_loss.item()
                    train_feat_loss += feat_loss.item()
                    train_rec_loss += rec_loss.item()
                    optimizer_g.zero_grad()
                    total_loss_g.backward()
                    optimizer_g.step()
                else:
                    # update discriminator
                    y_disc_r_det, fmap_r_det = stft_disc(x.detach())
                    y_disc_gen_det, fmap_gen_det = stft_disc(G_x.detach())

                    # MPD
                    y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(
                        x.detach(), G_x.detach())
                    #MSD
                    y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(
                        x.detach(), G_x.detach())

                    loss_d = loss_dis(
                        y_disc_r_det, y_disc_gen_det, fmap_r_det, fmap_gen_det,
                        y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g, y_ds_hat_r,
                        y_ds_hat_g, fmap_s_r, fmap_s_g, global_step, args)
                    train_loss_d += loss_d.item()
                    optimizer_d.zero_grad()
                    loss_d.backward()
                    optimizer_d.step()
            message = '<epoch:{:d}, iter:{:d}, total_loss_g:{:.4f}, adv_g_loss:{:.4f}, feat_loss:{:.4f}, rec_loss:{:.4f}, commit_loss:{:.4f}, loss_d:{:.4f}, d_weight: {:.4f}>'.format(
                epoch, k_iter,
                total_loss_g.item(),
                adv_g_loss.item(),
                feat_loss.item(),
                rec_loss.item(),
                commit_loss.item(), loss_d.item(), d_weight.item())
            if k_iter % args.print_freq == 0:
                logger.log_info(message)
        lr_scheduler_g.step()
        lr_scheduler_d.step()
        message = '<epoch:{:d}, <total_loss_g_train:{:.4f}, recon_loss_train:{:.4f}, adversarial_loss_train:{:.4f}, feature_loss_train:{:.4f}, commit_loss_train:{:.4f}>'.format(
            epoch, train_loss_g / len(train_loader), train_rec_loss /
            len(train_loader), train_adv_g_loss / len(train_loader),
            train_feat_loss / len(train_loader),
            train_commit_loss / len(train_loader))
        logger.log_info(message)
        with torch.no_grad():
            soundstream.eval()
            stft_disc.eval()
            mpd.eval()
            msd.eval()
            valid_loss_d = 0.0
            valid_loss_g = 0.0
            valid_commit_loss = 0.0
            valid_adv_g_loss = 0.0
            valid_feat_loss = 0.0
            valid_rec_loss = 0.0
            if args.distributed:
                valid_loader.sampler.set_epoch(epoch)
            for x in tqdm(valid_loader):
                x = x.to(args.device)
                for optimizer_idx in [0, 1]:
                    x_wav = get_input(x)
                    G_x, commit_loss, _ = soundstream(x_wav)
                    if optimizer_idx == 0:
                        valid_commit_loss += commit_loss
                        y_disc_r, fmap_r = stft_disc(x_wav.contiguous())
                        y_disc_gen, fmap_gen = stft_disc(G_x.contiguous())
                        y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(
                            x_wav.contiguous(), G_x.contiguous())
                        y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(
                            x_wav.contiguous(), G_x.contiguous())

                        total_loss_g, adv_g_loss, feat_loss, rec_loss = criterion_g(
                            commit_loss,
                            x_wav,
                            G_x,
                            fmap_r,
                            fmap_gen,
                            y_disc_r,
                            y_disc_gen,
                            y_df_hat_r,
                            y_df_hat_g,
                            fmap_f_r,
                            fmap_f_g,
                            y_ds_hat_r,
                            y_ds_hat_g,
                            fmap_s_r,
                            fmap_s_g,
                            args=args)
                        valid_loss_g += total_loss_g.item()
                        valid_adv_g_loss += adv_g_loss.item()
                        valid_feat_loss += feat_loss.item()
                        valid_rec_loss += rec_loss.item()
                    else:
                        y_disc_r_det, fmap_r_det = stft_disc(
                            x_wav.contiguous().detach())
                        y_disc_gen_det, fmap_gen_det = stft_disc(
                            G_x.contiguous().detach())
                        y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(
                            x_wav.contiguous().detach(),
                            G_x.contiguous().detach())
                        y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(
                            x_wav.contiguous().detach(),
                            G_x.contiguous().detach())
                        loss_d = criterion_d(y_disc_r_det, y_disc_gen_det,
                                             fmap_r_det, fmap_gen_det,
                                             y_df_hat_r, y_df_hat_g, fmap_f_r,
                                             fmap_f_g, y_ds_hat_r, y_ds_hat_g,
                                             fmap_s_r, fmap_s_g)
                        valid_loss_d += loss_d.item()
            if dist.get_rank() == 0:
                best_model = soundstream.state_dict().copy()
                latest_model_soundstream = soundstream.state_dict().copy()
                latest_model_dis = stft_disc.state_dict().copy()
                latest_mpd = mpd.state_dict().copy()
                latest_msd = msd.state_dict().copy()
                if valid_rec_loss < best_val_loss:
                    best_val_loss = valid_rec_loss
                    best_val_epoch = epoch
                torch.save(best_model,
                           args.PATH + '/best_' + str(epoch) + '.pth')
                latest_save = {}
                latest_save['soundstream'] = latest_model_soundstream
                latest_save['stft_disc'] = latest_model_dis
                latest_save['mpd'] = latest_mpd
                latest_save['msd'] = latest_msd
                latest_save['epoch'] = epoch
                latest_save['optimizer_g'] = optimizer_g.state_dict()
                latest_save['optimizer_d'] = optimizer_d.state_dict()
                latest_save['lr_scheduler_g'] = lr_scheduler_g.state_dict()
                latest_save['lr_scheduler_d'] = lr_scheduler_d.state_dict()
                torch.save(latest_save, args.PATH + '/latest.pth')

            message = '<epoch:{:d}, total_loss_g_valid:{:.4f}, recon_loss_valid:{:.4f}, adversarial_loss_valid:{:.4f}, feature_loss_valid:{:.4f}, commit_loss_valid:{:.4f}, valid_loss_d:{:.4f}, best_epoch:{:d}>'.format(
                epoch, valid_loss_g / len(valid_loader), valid_rec_loss /
                len(valid_loader), valid_adv_g_loss / len(valid_loader),
                valid_feat_loss / len(valid_loader),
                valid_commit_loss / len(valid_loader),
                valid_loss_d / len(valid_loader), best_val_epoch)
            logger.log_info(message)


if __name__ == '__main__':
    main()