Spaces:
Runtime error
Runtime error
File size: 5,233 Bytes
12bfd03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
# 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import json
import math
from functools import partial
import torch
import torch.distributed as dist
from torch.utils.data import IterableDataset
from cosyvoice.utils.file_utils import read_lists, read_json_lists
class Processor(IterableDataset):
def __init__(self, source, f, *args, **kw):
assert callable(f)
self.source = source
self.f = f
self.args = args
self.kw = kw
def set_epoch(self, epoch):
self.source.set_epoch(epoch)
def __iter__(self):
""" Return an iterator over the source dataset processed by the
given processor.
"""
assert self.source is not None
assert callable(self.f)
return self.f(iter(self.source), *self.args, **self.kw)
def apply(self, f):
assert callable(f)
return Processor(self, f, *self.args, **self.kw)
class DistributedSampler:
def __init__(self, shuffle=True, partition=True):
self.epoch = -1
self.update()
self.shuffle = shuffle
self.partition = partition
def update(self):
assert dist.is_available()
if dist.is_initialized():
self.rank = dist.get_rank()
self.world_size = dist.get_world_size()
else:
self.rank = 0
self.world_size = 1
worker_info = torch.utils.data.get_worker_info()
if worker_info is None:
self.worker_id = 0
self.num_workers = 1
else:
self.worker_id = worker_info.id
self.num_workers = worker_info.num_workers
return dict(rank=self.rank,
world_size=self.world_size,
worker_id=self.worker_id,
num_workers=self.num_workers)
def set_epoch(self, epoch):
self.epoch = epoch
def sample(self, data):
""" Sample data according to rank/world_size/num_workers
Args:
data(List): input data list
Returns:
List: data list after sample
"""
data = list(range(len(data)))
# force datalist even
if self.partition:
if self.shuffle:
random.Random(self.epoch).shuffle(data)
if len(data) < self.world_size:
data = data * math.ceil(self.world_size / len(data))
data = data[:self.world_size]
data = data[self.rank::self.world_size]
if len(data) < self.num_workers:
data = data * math.ceil(self.num_workers / len(data))
data = data[:self.num_workers]
data = data[self.worker_id::self.num_workers]
return data
class DataList(IterableDataset):
def __init__(self, lists, shuffle=True, partition=True):
self.lists = lists
self.sampler = DistributedSampler(shuffle, partition)
def set_epoch(self, epoch):
self.sampler.set_epoch(epoch)
def __iter__(self):
sampler_info = self.sampler.update()
indexes = self.sampler.sample(self.lists)
for index in indexes:
data = dict(src=self.lists[index])
data.update(sampler_info)
yield data
def Dataset(data_list_file,
data_pipeline,
mode='train',
shuffle=True,
partition=True,
tts_file='',
prompt_utt2data=''):
""" Construct dataset from arguments
We have two shuffle stage in the Dataset. The first is global
shuffle at shards tar/raw file level. The second is global shuffle
at training samples level.
Args:
data_type(str): raw/shard
tokenizer (BaseTokenizer): tokenizer to tokenize
partition(bool): whether to do data partition in terms of rank
"""
assert mode in ['train', 'inference']
lists = read_lists(data_list_file)
if mode == 'inference':
with open(tts_file) as f:
tts_data = json.load(f)
utt2lists = read_json_lists(prompt_utt2data)
# filter unnecessary file in inference mode
lists = list(set([utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists]))
dataset = DataList(lists,
shuffle=shuffle,
partition=partition)
if mode == 'inference':
# map partial arg tts_data in inference mode
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
for func in data_pipeline:
dataset = Processor(dataset, func, mode=mode)
return dataset
|