File size: 13,237 Bytes
12bfd03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
from typing import Any, Dict, Optional

import torch
import torch.nn as nn
from diffusers.models.attention import (
    GEGLU,
    GELU,
    AdaLayerNorm,
    AdaLayerNormZero,
    ApproximateGELU,
)
from diffusers.models.attention_processor import Attention
from diffusers.models.lora import LoRACompatibleLinear
from diffusers.utils.torch_utils import maybe_allow_in_graph


class SnakeBeta(nn.Module):
    """
    A modified Snake function which uses separate parameters for the magnitude of the periodic components
    Shape:
        - Input: (B, C, T)
        - Output: (B, C, T), same shape as the input
    Parameters:
        - alpha - trainable parameter that controls frequency
        - beta - trainable parameter that controls magnitude
    References:
        - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
        https://arxiv.org/abs/2006.08195
    Examples:
        >>> a1 = snakebeta(256)
        >>> x = torch.randn(256)
        >>> x = a1(x)
    """

    def __init__(self, in_features, out_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
        """
        Initialization.
        INPUT:
            - in_features: shape of the input
            - alpha - trainable parameter that controls frequency
            - beta - trainable parameter that controls magnitude
            alpha is initialized to 1 by default, higher values = higher-frequency.
            beta is initialized to 1 by default, higher values = higher-magnitude.
            alpha will be trained along with the rest of your model.
        """
        super().__init__()
        self.in_features = out_features if isinstance(out_features, list) else [out_features]
        self.proj = LoRACompatibleLinear(in_features, out_features)

        # initialize alpha
        self.alpha_logscale = alpha_logscale
        if self.alpha_logscale:  # log scale alphas initialized to zeros
            self.alpha = nn.Parameter(torch.zeros(self.in_features) * alpha)
            self.beta = nn.Parameter(torch.zeros(self.in_features) * alpha)
        else:  # linear scale alphas initialized to ones
            self.alpha = nn.Parameter(torch.ones(self.in_features) * alpha)
            self.beta = nn.Parameter(torch.ones(self.in_features) * alpha)

        self.alpha.requires_grad = alpha_trainable
        self.beta.requires_grad = alpha_trainable

        self.no_div_by_zero = 0.000000001

    def forward(self, x):
        """
        Forward pass of the function.
        Applies the function to the input elementwise.
        SnakeBeta ∶= x + 1/b * sin^2 (xa)
        """
        x = self.proj(x)
        if self.alpha_logscale:
            alpha = torch.exp(self.alpha)
            beta = torch.exp(self.beta)
        else:
            alpha = self.alpha
            beta = self.beta

        x = x + (1.0 / (beta + self.no_div_by_zero)) * torch.pow(torch.sin(x * alpha), 2)

        return x


class FeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
    """

    def __init__(
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
        final_dropout: bool = False,
    ):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim

        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh")
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
        elif activation_fn == "geglu-approximate":
            act_fn = ApproximateGELU(dim, inner_dim)
        elif activation_fn == "snakebeta":
            act_fn = SnakeBeta(dim, inner_dim)

        self.net = nn.ModuleList([])
        # project in
        self.net.append(act_fn)
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))

    def forward(self, hidden_states):
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states


@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        final_dropout: bool = False,
    ):
        super().__init__()
        self.only_cross_attention = only_cross_attention

        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        elif self.use_ada_layer_norm_zero:
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
            upcast_attention=upcast_attention,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None or double_self_attention:
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm)
                if self.use_ada_layer_norm
                else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
            )
            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
                # scale_qk=False, # uncomment this to not to use flash attention
            )  # is self-attn if encoder_hidden_states is none
        else:
            self.norm2 = None
            self.attn2 = None

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
    ):
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 1. Self-Attention
        if self.use_ada_layer_norm:
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.use_ada_layer_norm_zero:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        else:
            norm_hidden_states = self.norm1(hidden_states)

        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask,
            **cross_attention_kwargs,
        )
        if self.use_ada_layer_norm_zero:
            attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = attn_output + hidden_states

        # 2. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )

            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                **cross_attention_kwargs,
            )
            hidden_states = attn_output + hidden_states

        # 3. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        if self.use_ada_layer_norm_zero:
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
                raise ValueError(
                    f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
                )

            num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
            ff_output = torch.cat(
                [self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
                dim=self._chunk_dim,
            )
        else:
            ff_output = self.ff(norm_hidden_states)

        if self.use_ada_layer_norm_zero:
            ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = ff_output + hidden_states

        return hidden_states