File size: 5,352 Bytes
94f5fd3 37d364a 94f5fd3 37d364a 94f5fd3 37d364a 94f5fd3 37d364a 94f5fd3 37d364a 94f5fd3 37d364a 94f5fd3 37d364a 94f5fd3 37d364a 94f5fd3 37d364a 94f5fd3 37d364a 94f5fd3 37d364a 94f5fd3 37d364a 94f5fd3 37d364a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import numpy as np
import plotly.graph_objects as go
def _debug_non_unique_axis_values(sent1: list[str], sent2: list[str]):
"""
solution:
using zero-width-space
cf. https://github.com/plotly/plotly.js/issues/1516#issuecomment-983090013
"""
sent1 = [word + i * "\u200b" for i, word in enumerate(sent1)]
sent2 = [word + i * "\u200b" for i, word in enumerate(sent2)]
return sent1, sent2
def discrete_colorscale(bvals, colors):
"""
bvals - list of values bounding intervals/ranges of interest
colors - list of rgb or hex colorcodes for values in [bvals[k], bvals[k+1]],0<=k < len(bvals)-1
returns the plotly discrete colorscale
ref. https://community.plotly.com/t/colors-for-discrete-ranges-in-heatmaps/7780
"""
if len(bvals) != len(colors) + 1:
raise ValueError("len(boundary values) should be equal to len(colors)+1")
bvals = sorted(bvals)
nvals = [
(v - bvals[0]) / (bvals[-1] - bvals[0]) for v in bvals
] # normalized values
dcolorscale = [] # discrete colorscale
for k in range(len(colors)):
dcolorscale.extend([[nvals[k], colors[k]], [nvals[k + 1], colors[k]]])
return dcolorscale
def plot_align_matrix_heatmap_plotly(align_matrix, sent1, sent2, threshhold, Cost):
align_matrix = np.where(align_matrix <= threshhold, 0, align_matrix)
sent1, sent2 = _debug_non_unique_axis_values(sent1, sent2)
_colors = [
"#F2F2F2",
"#E0F4FA",
"#BEE4F0",
"#88CCE5",
"#33b7df",
"#1B88A6",
"#105264",
"#092E39",
]
_ticks = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0]
colorscale = discrete_colorscale(_ticks, _colors)
fig = go.Figure()
fig.add_trace(
go.Heatmap(
z=align_matrix,
customdata=Cost,
x=sent1,
y=sent2,
xgap=2,
ygap=2,
colorscale=colorscale,
colorbar=dict(tick0=0, dtick=0.125, outlinewidth=0),
hovertemplate="x: %{x}<br>"
+ "y: %{y}<br>"
+ "P: %{z:.3f}<br>"
+ "cost: %{customdata:.3f} ",
name="",
)
)
fig.update_layout(
# xaxis=dict(scaleanchor='y'),
yaxis=dict(autorange="reversed"),
margin={"l": 0, "r": 0, "t": 0, "b": 0},
plot_bgcolor="rgba(0,0,0,0)",
font=dict(
size=16,
),
hoverlabel=dict(
bgcolor="#555", font_color="white", font_size=14, font_family="Open Sans"
),
)
fig.update_xaxes(
tickangle=-45,
)
return fig
def plot_similarity_matrix_heatmap_plotly(
similarity_matrix, sent1, sent2, Cost, colorscale="Reds", hover_z="cosine"
):
sent1, sent2 = _debug_non_unique_axis_values(sent1, sent2)
fig = go.Figure()
fig.add_trace(
go.Heatmap(
z=similarity_matrix,
customdata=Cost,
x=sent1,
y=sent2,
xgap=2,
ygap=2,
colorscale=colorscale,
colorbar=dict(tick0=0, dtick=0.125, outlinewidth=0),
hovertemplate="x: %{x}<br>"
+ "y: %{y}<br>"
+ f"{hover_z}: "
+ "%{z:.3f}<br>"
+ "cost: %{customdata:.3f} ",
name="",
)
)
fig.update_layout(
# xaxis=dict(scaleanchor='y'),
yaxis=dict(autorange="reversed"),
margin={"l": 0, "r": 0, "t": 0, "b": 0},
plot_bgcolor="rgba(0,0,0,0)",
font=dict(
size=16,
),
hoverlabel=dict(
bgcolor="#555", font_color="white", font_size=14, font_family="Open Sans"
),
)
fig.update_xaxes(
tickangle=-45,
)
return fig
def show_assignments_plotly(P, word_embeddings, sents1, sents2, thr=0):
P = np.where(P <= thr, 0, P)
s1_end = len(sents1)
a = word_embeddings[:s1_end]
b = word_embeddings[s1_end:]
traces = []
sample = 0
for i in range(a.shape[0]):
for j in range(b.shape[0]):
if P[i, j] > 0:
sample += 1
traces.append(
go.Scatter(
x=[a[i, 0], b[j, 0]],
y=[a[i, 1], b[j, 1]],
mode="lines",
line=dict(color="black", width=P[i, j] * 2),
opacity=P[i, j],
name=f"{sample}",
)
)
# ソースサンプルの描画
traces.append(
go.Scatter(
x=a[:, 0],
y=a[:, 1],
mode="markers+text",
marker=dict(color="blue", size=8, symbol="cross"),
text=sents1,
textposition="top center",
name="Source samples",
)
)
# ターゲットサンプルの描画
traces.append(
go.Scatter(
x=b[:, 0],
y=b[:, 1],
mode="markers+text",
marker=dict(color="red", size=8, symbol="x"),
text=sents2,
textposition="bottom center",
name="Target samples",
)
)
layout = go.Layout(
showlegend=True,
margin=dict(l=0, r=0, t=10, b=0),
)
fig = go.Figure(data=traces, layout=layout)
return fig
|