File size: 5,512 Bytes
527e550 37d364a 527e550 37d364a 527e550 37d364a 94f5fd3 37d364a 527e550 37d364a 94f5fd3 37d364a 527e550 94f5fd3 37d364a 527e550 37d364a 527e550 37d364a 527e550 37d364a 527e550 37d364a 527e550 37d364a 527e550 37d364a 94f5fd3 37d364a 94f5fd3 527e550 94f5fd3 37d364a 94f5fd3 527e550 37d364a 527e550 37d364a 527e550 37d364a 527e550 37d364a 527e550 37d364a 527e550 37d364a 527e550 94f5fd3 527e550 94f5fd3 527e550 94f5fd3 37d364a 527e550 37d364a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import random
import numpy as np
import streamlit as st
import torch
import umap
from nltk.tokenize import word_tokenize
from transformers import AutoModel, AutoTokenizer
from aligner import Aligner
# from utils import align_matrix_heatmap, plot_align_matrix_heatmap
from plotools import (
plot_align_matrix_heatmap_plotly,
plot_similarity_matrix_heatmap_plotly,
show_assignments_plotly,
)
from utils import centering, convert_to_word_embeddings, encode_sentence
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.manual_seed(42)
np.random.seed(42)
random.seed(42)
import nltk
nltk.download("punkt")
@st.cache_resource
def init_model(model: str):
tokenizer = AutoTokenizer.from_pretrained(model)
model = (
AutoModel.from_pretrained(model, output_hidden_states=True).to(device).eval()
)
return tokenizer, model
@st.cache_resource(max_entries=100)
def init_aligner(
ot_type: str, sinkhorn: bool, distortion: float, threshhold: float, tau: float
):
return Aligner(
ot_type=ot_type,
sinkhorn=sinkhorn,
dist_type="cos",
weight_type="uniform",
distortion=distortion,
thresh=threshhold, # 0.25252525252525254
tau=tau, # 0.9803921568627451
div_type="--",
)
def main():
st.set_page_config(layout="wide")
# Sidebar
st.sidebar.markdown("## Settings & Parameters")
model = st.sidebar.selectbox(
"model", ["microsoft/deberta-v3-base", "bert-base-uncased"]
)
layer = st.sidebar.slider(
"layer number for embeddings",
0,
11,
value=9,
)
is_centering = st.sidebar.checkbox("centering embeddings", value=True)
ot_type = st.sidebar.selectbox(
"ot_type", ["POT", "UOT", "OT"], help="optimal transport algorithm to be used"
)
ot_type = ot_type.lower()
sinkhorn = st.sidebar.checkbox(
"sinkhorn", value=True, help="use sinkhorn algorithm"
)
distortion = st.sidebar.slider(
"distortion: $\kappa$",
0.0,
1.0,
value=0.20,
help="suppression of off-diagonal alignments",
)
tau = st.sidebar.slider(
"m / $\\tau$",
0.0,
1.0,
value=0.98,
help="fraction of fertility to be aligned (fraction of mass to be transported) / penalties",
) # with 0.02 interva
threshhold = st.sidebar.slider(
"threshhold: $\lambda$",
0.0,
1.0,
value=0.22,
help="sparsity of alignment matrix",
) # with 0.01 interval
show_assignments = st.sidebar.checkbox("show assignments", value=True)
if show_assignments:
n_neighbors = st.sidebar.slider(
"n_neighbors", 2, 10, value=8, help="number of neighbors for umap"
)
# Content
st.markdown(
"## Playground: Unbalanced Optimal Transport for Unbalanced Word Alignment"
)
col1, col2 = st.columns(2)
with col1:
sent1 = st.text_area(
"sentence 1",
"By one estimate, fewer than 20,000 lions exist in the wild, a drop of about 40 percent in the past two decades.",
help="Initial text",
)
with col2:
sent2 = st.text_area(
"sentence 2",
"Today there are only around 20,000 wild lions left in the world.",
help="Text to compare",
)
tokenizer, model = init_model(model)
aligner = init_aligner(ot_type, sinkhorn, distortion, threshhold, tau)
with st.container():
if sent1 != '' and sent2 != '':
sent1 = word_tokenize(sent1.lower())
sent2 = word_tokenize(sent2.lower())
print(sent1)
print(sent2)
hidden_output, input_id, offset_map = encode_sentence(sent1, sent2, tokenizer, model, layer=layer)
if is_centering:
hidden_output = centering(hidden_output)
s1_vec, s2_vec = convert_to_word_embeddings(offset_map, input_id, hidden_output, tokenizer, pair=True)
align_matrix, cost_matrix, loss, similarity_matrix = aligner.compute_alignment_matrixes(s1_vec, s2_vec)
print(align_matrix.shape, cost_matrix.shape)
st.write(f"**word alignment matrix** (loss: :blue[{loss}])")
fig = plot_align_matrix_heatmap_plotly(align_matrix.T, sent1, sent2, threshhold, cost_matrix.T)
st.plotly_chart(fig, use_container_width=True)
st.write(f"**word similarity matrix**")
fig2 = plot_similarity_matrix_heatmap_plotly(similarity_matrix.T, sent1, sent2, cost_matrix.T)
st.plotly_chart(fig2, use_container_width=True)
if show_assignments:
st.write(f"**Alignments after UMAP**")
word_embeddings = torch.vstack([s1_vec, s2_vec])
umap_embeddings = umap.UMAP(
n_neighbors=n_neighbors,
n_components=2,
random_state=42,
metric="cosine",
).fit_transform(word_embeddings.detach().numpy())
print(umap_embeddings.shape)
fig3 = show_assignments_plotly(
align_matrix, umap_embeddings, sent1, sent2, thr=threshhold
)
st.plotly_chart(fig3, use_container_width=True)
st.divider()
st.subheader('Refs')
st.write("Yuki Arase, Han Bao, Sho Yokoi, [Unbalanced Optimal Transport for Unbalanced Word Alignment](https://arxiv.org/abs/2306.04116), ACL2023 [[github](https://github.com/yukiar/OTAlign/tree/main)]")
if __name__ == '__main__':
main()
|