YixuanWang
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
-
import torch
|
5 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
from textblob import TextBlob
|
7 |
from typing import List, Dict, Tuple
|
8 |
from dataclasses import dataclass
|
9 |
from pathlib import Path
|
10 |
import logging
|
11 |
-
import re
|
12 |
-
from datetime import datetime
|
13 |
|
14 |
-
# Configure logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
@@ -23,15 +18,13 @@ class RecommendationWeights:
|
|
23 |
|
24 |
class TweetPreprocessor:
|
25 |
def __init__(self, data_path: Path):
|
26 |
-
"""Initialize the preprocessor with data path."""
|
27 |
self.data = self._load_data(data_path)
|
28 |
|
29 |
@staticmethod
|
30 |
def _load_data(data_path: Path) -> pd.DataFrame:
|
31 |
-
"""Load and validate the dataset."""
|
32 |
try:
|
33 |
data = pd.read_csv(data_path)
|
34 |
-
required_columns = {'Text', 'Retweets', 'Likes'
|
35 |
if not required_columns.issubset(data.columns):
|
36 |
raise ValueError(f"Missing required columns: {required_columns - set(data.columns)}")
|
37 |
return data
|
@@ -39,43 +32,14 @@ class TweetPreprocessor:
|
|
39 |
logger.error(f"Error loading data: {e}")
|
40 |
raise
|
41 |
|
42 |
-
def _clean_text(self, text: str) -> str:
|
43 |
-
"""清理文本内容,移除无意义的内容"""
|
44 |
-
if pd.isna(text) or len(str(text).strip()) < 10: # 排除过短或空的文本
|
45 |
-
return ""
|
46 |
-
|
47 |
-
# 移除URL
|
48 |
-
text = re.sub(r'http\S+|www.\S+', '', str(text))
|
49 |
-
# 移除特殊字符
|
50 |
-
text = re.sub(r'[^\w\s]', '', text)
|
51 |
-
# 移除多余空格
|
52 |
-
text = ' '.join(text.split())
|
53 |
-
return text
|
54 |
-
|
55 |
def calculate_metrics(self) -> pd.DataFrame:
|
56 |
-
|
57 |
-
# 清理文本
|
58 |
-
self.data['Clean_Text'] = self.data['Text'].apply(self._clean_text)
|
59 |
-
# 过滤掉无效的文本
|
60 |
-
self.data = self.data[self.data['Clean_Text'].str.len() > 0]
|
61 |
-
|
62 |
-
self.data['Sentiment'] = self.data['Clean_Text'].apply(self._get_sentiment)
|
63 |
self.data['Popularity'] = self._normalize_popularity()
|
64 |
-
|
65 |
-
# 添加时间衰减因子
|
66 |
-
self.data['Time_Weight'] = self._calculate_time_weight()
|
67 |
return self.data
|
68 |
|
69 |
-
def _calculate_time_weight(self) -> pd.Series:
|
70 |
-
"""计算时间权重,越新的内容权重越高"""
|
71 |
-
current_time = datetime.now()
|
72 |
-
self.data['Timestamp'] = pd.to_datetime(self.data['Timestamp'])
|
73 |
-
time_diff = (current_time - self.data['Timestamp']).dt.total_seconds()
|
74 |
-
return np.exp(-time_diff / (7 * 24 * 3600)) # 7天的衰减周期
|
75 |
-
|
76 |
@staticmethod
|
77 |
def _get_sentiment(text: str) -> float:
|
78 |
-
"""Calculate sentiment polarity for a text."""
|
79 |
try:
|
80 |
return TextBlob(str(text)).sentiment.polarity
|
81 |
except Exception as e:
|
@@ -83,63 +47,19 @@ class TweetPreprocessor:
|
|
83 |
return 0.0
|
84 |
|
85 |
def _normalize_popularity(self) -> pd.Series:
|
86 |
-
"""Normalize popularity scores using min-max scaling."""
|
87 |
popularity = self.data['Retweets'] + self.data['Likes']
|
88 |
return (popularity - popularity.min()) / (popularity.max() - popularity.min() + 1e-6)
|
89 |
-
class FakeNewsClassifier:
|
90 |
-
def __init__(self, model_name: str):
|
91 |
-
"""Initialize the fake news classifier."""
|
92 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
93 |
-
self.model_name = model_name
|
94 |
-
self.model, self.tokenizer = self._load_model()
|
95 |
-
|
96 |
-
def _load_model(self) -> Tuple[AutoModelForSequenceClassification, AutoTokenizer]:
|
97 |
-
"""Load the model and tokenizer."""
|
98 |
-
try:
|
99 |
-
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
100 |
-
model = AutoModelForSequenceClassification.from_pretrained(self.model_name).to(self.device)
|
101 |
-
return model, tokenizer
|
102 |
-
except Exception as e:
|
103 |
-
logger.error(f"Error loading model: {e}")
|
104 |
-
raise
|
105 |
-
|
106 |
-
@torch.no_grad()
|
107 |
-
def predict_batch(self, texts: List[str], batch_size: int = 32) -> np.ndarray:
|
108 |
-
"""Predict fake news probability for a batch of texts."""
|
109 |
-
predictions = []
|
110 |
-
|
111 |
-
for i in range(0, len(texts), batch_size):
|
112 |
-
batch_texts = texts[i:i + batch_size]
|
113 |
-
inputs = self.tokenizer(
|
114 |
-
batch_texts,
|
115 |
-
return_tensors="pt",
|
116 |
-
padding=True,
|
117 |
-
truncation=True,
|
118 |
-
max_length=128
|
119 |
-
).to(self.device)
|
120 |
-
|
121 |
-
outputs = self.model(**inputs)
|
122 |
-
batch_predictions = outputs.logits.argmax(dim=1).cpu().numpy()
|
123 |
-
predictions.extend(batch_predictions)
|
124 |
-
|
125 |
-
return np.array(predictions)
|
126 |
|
127 |
class RecommendationSystem:
|
128 |
-
def __init__(self, data_path: Path
|
129 |
-
"""Initialize the recommendation system."""
|
130 |
self.preprocessor = TweetPreprocessor(data_path)
|
131 |
-
self.classifier = FakeNewsClassifier(model_name)
|
132 |
self.data = None
|
133 |
self.setup_system()
|
134 |
|
135 |
def setup_system(self):
|
136 |
-
"""Set up the recommendation system."""
|
137 |
self.data = self.preprocessor.calculate_metrics()
|
138 |
-
predictions = self.classifier.predict_batch(self.data['Clean_Text'].tolist())
|
139 |
-
self.data['Credibility'] = [1 if pred == 1 else -1 for pred in predictions]
|
140 |
|
141 |
def get_recommendations(self, weights: RecommendationWeights, num_recommendations: int = 10) -> Dict:
|
142 |
-
"""Get tweet recommendations based on weights."""
|
143 |
if not self._validate_weights(weights):
|
144 |
return {"error": "Invalid weights provided"}
|
145 |
|
@@ -149,17 +69,15 @@ class RecommendationSystem:
|
|
149 |
self.data['Credibility'] * normalized_weights.visibility +
|
150 |
self.data['Sentiment'] * normalized_weights.sentiment +
|
151 |
self.data['Popularity'] * normalized_weights.popularity
|
152 |
-
)
|
153 |
|
154 |
top_recommendations = (
|
155 |
-
self.data.nlargest(
|
156 |
-
.sample(num_recommendations)
|
157 |
)
|
158 |
|
159 |
return self._format_recommendations(top_recommendations)
|
160 |
|
161 |
def _format_recommendations(self, recommendations: pd.DataFrame) -> Dict:
|
162 |
-
"""Format recommendations for display."""
|
163 |
formatted_results = []
|
164 |
for _, row in recommendations.iterrows():
|
165 |
score_details = {
|
@@ -171,9 +89,8 @@ class RecommendationSystem:
|
|
171 |
}
|
172 |
|
173 |
formatted_results.append({
|
174 |
-
"text": row['
|
175 |
-
"scores": score_details
|
176 |
-
"timestamp": row['Timestamp'].strftime("%Y-%m-%d %H:%M")
|
177 |
})
|
178 |
|
179 |
return {
|
@@ -183,34 +100,40 @@ class RecommendationSystem:
|
|
183 |
|
184 |
@staticmethod
|
185 |
def _get_sentiment_label(sentiment_score: float) -> str:
|
186 |
-
"""Convert sentiment score to human-readable label."""
|
187 |
if sentiment_score > 0.3:
|
188 |
return "积极"
|
189 |
elif sentiment_score < -0.3:
|
190 |
return "消极"
|
191 |
return "中性"
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
@staticmethod
|
194 |
def _get_score_explanation() -> Dict[str, str]:
|
195 |
-
"""Provide explanation for different score components."""
|
196 |
return {
|
197 |
-
"可信度": "
|
198 |
-
"情感倾向": "
|
199 |
-
"热度": "
|
200 |
-
"时间权重": "考虑内容时效性的权重因子"
|
201 |
}
|
202 |
|
203 |
def create_gradio_interface(recommendation_system: RecommendationSystem) -> gr.Interface:
|
204 |
-
"""Create and configure the Gradio interface."""
|
205 |
with gr.Blocks(theme=gr.themes.Soft()) as interface:
|
206 |
gr.Markdown("""
|
207 |
# 推文推荐系统
|
208 |
-
|
209 |
-
这个系统通过多个维度来为您推荐高质量的推文:
|
210 |
-
- **可信度**: 评估内容的可靠性
|
211 |
-
- **情感倾向**: 分析文本的情感色彩
|
212 |
-
- **热度**: 考虑内容的受欢迎程度
|
213 |
-
- **时效性**: 优先推荐较新的内容
|
214 |
""")
|
215 |
|
216 |
with gr.Row():
|
@@ -246,11 +169,9 @@ def create_gradio_interface(recommendation_system: RecommendationSystem) -> gr.I
|
|
246 |
return interface
|
247 |
|
248 |
def main():
|
249 |
-
"""Main function to run the application."""
|
250 |
try:
|
251 |
recommendation_system = RecommendationSystem(
|
252 |
-
data_path=Path('twitter_dataset.csv')
|
253 |
-
model_name="hamzab/roberta-fake-news-classification"
|
254 |
)
|
255 |
interface = create_gradio_interface(recommendation_system)
|
256 |
interface.launch()
|
@@ -259,4 +180,4 @@ def main():
|
|
259 |
raise
|
260 |
|
261 |
if __name__ == "__main__":
|
262 |
-
main()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
|
|
|
|
4 |
from textblob import TextBlob
|
5 |
from typing import List, Dict, Tuple
|
6 |
from dataclasses import dataclass
|
7 |
from pathlib import Path
|
8 |
import logging
|
|
|
|
|
9 |
|
|
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
|
|
18 |
|
19 |
class TweetPreprocessor:
|
20 |
def __init__(self, data_path: Path):
|
|
|
21 |
self.data = self._load_data(data_path)
|
22 |
|
23 |
@staticmethod
|
24 |
def _load_data(data_path: Path) -> pd.DataFrame:
|
|
|
25 |
try:
|
26 |
data = pd.read_csv(data_path)
|
27 |
+
required_columns = {'Text', 'Retweets', 'Likes'}
|
28 |
if not required_columns.issubset(data.columns):
|
29 |
raise ValueError(f"Missing required columns: {required_columns - set(data.columns)}")
|
30 |
return data
|
|
|
32 |
logger.error(f"Error loading data: {e}")
|
33 |
raise
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def calculate_metrics(self) -> pd.DataFrame:
|
36 |
+
self.data['Sentiment'] = self.data['Text'].apply(self._get_sentiment)
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
self.data['Popularity'] = self._normalize_popularity()
|
38 |
+
self.data['Credibility'] = np.random.choice([0, 1], size=len(self.data), p=[0.3, 0.7])
|
|
|
|
|
39 |
return self.data
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
@staticmethod
|
42 |
def _get_sentiment(text: str) -> float:
|
|
|
43 |
try:
|
44 |
return TextBlob(str(text)).sentiment.polarity
|
45 |
except Exception as e:
|
|
|
47 |
return 0.0
|
48 |
|
49 |
def _normalize_popularity(self) -> pd.Series:
|
|
|
50 |
popularity = self.data['Retweets'] + self.data['Likes']
|
51 |
return (popularity - popularity.min()) / (popularity.max() - popularity.min() + 1e-6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
class RecommendationSystem:
|
54 |
+
def __init__(self, data_path: Path):
|
|
|
55 |
self.preprocessor = TweetPreprocessor(data_path)
|
|
|
56 |
self.data = None
|
57 |
self.setup_system()
|
58 |
|
59 |
def setup_system(self):
|
|
|
60 |
self.data = self.preprocessor.calculate_metrics()
|
|
|
|
|
61 |
|
62 |
def get_recommendations(self, weights: RecommendationWeights, num_recommendations: int = 10) -> Dict:
|
|
|
63 |
if not self._validate_weights(weights):
|
64 |
return {"error": "Invalid weights provided"}
|
65 |
|
|
|
69 |
self.data['Credibility'] * normalized_weights.visibility +
|
70 |
self.data['Sentiment'] * normalized_weights.sentiment +
|
71 |
self.data['Popularity'] * normalized_weights.popularity
|
72 |
+
)
|
73 |
|
74 |
top_recommendations = (
|
75 |
+
self.data.nlargest(num_recommendations, 'Final_Score')
|
|
|
76 |
)
|
77 |
|
78 |
return self._format_recommendations(top_recommendations)
|
79 |
|
80 |
def _format_recommendations(self, recommendations: pd.DataFrame) -> Dict:
|
|
|
81 |
formatted_results = []
|
82 |
for _, row in recommendations.iterrows():
|
83 |
score_details = {
|
|
|
89 |
}
|
90 |
|
91 |
formatted_results.append({
|
92 |
+
"text": row['Text'],
|
93 |
+
"scores": score_details
|
|
|
94 |
})
|
95 |
|
96 |
return {
|
|
|
100 |
|
101 |
@staticmethod
|
102 |
def _get_sentiment_label(sentiment_score: float) -> str:
|
|
|
103 |
if sentiment_score > 0.3:
|
104 |
return "积极"
|
105 |
elif sentiment_score < -0.3:
|
106 |
return "消极"
|
107 |
return "中性"
|
108 |
|
109 |
+
@staticmethod
|
110 |
+
def _validate_weights(weights: RecommendationWeights) -> bool:
|
111 |
+
return all(getattr(weights, field) >= 0 for field in weights.__dataclass_fields__)
|
112 |
+
|
113 |
+
@staticmethod
|
114 |
+
def _normalize_weights(weights: RecommendationWeights) -> RecommendationWeights:
|
115 |
+
total = weights.visibility + weights.sentiment + weights.popularity
|
116 |
+
if total == 0:
|
117 |
+
return RecommendationWeights(1/3, 1/3, 1/3)
|
118 |
+
return RecommendationWeights(
|
119 |
+
visibility=weights.visibility / total,
|
120 |
+
sentiment=weights.sentiment / total,
|
121 |
+
popularity=weights.popularity / total
|
122 |
+
)
|
123 |
+
|
124 |
@staticmethod
|
125 |
def _get_score_explanation() -> Dict[str, str]:
|
|
|
126 |
return {
|
127 |
+
"可信度": "内容可信度评估",
|
128 |
+
"情感倾向": "文本的情感分析结果",
|
129 |
+
"热度": "基于点赞和转发的热度分数"
|
|
|
130 |
}
|
131 |
|
132 |
def create_gradio_interface(recommendation_system: RecommendationSystem) -> gr.Interface:
|
|
|
133 |
with gr.Blocks(theme=gr.themes.Soft()) as interface:
|
134 |
gr.Markdown("""
|
135 |
# 推文推荐系统
|
136 |
+
调整下方的权重来获取个性化推荐:
|
|
|
|
|
|
|
|
|
|
|
137 |
""")
|
138 |
|
139 |
with gr.Row():
|
|
|
169 |
return interface
|
170 |
|
171 |
def main():
|
|
|
172 |
try:
|
173 |
recommendation_system = RecommendationSystem(
|
174 |
+
data_path=Path('twitter_dataset.csv')
|
|
|
175 |
)
|
176 |
interface = create_gradio_interface(recommendation_system)
|
177 |
interface.launch()
|
|
|
180 |
raise
|
181 |
|
182 |
if __name__ == "__main__":
|
183 |
+
main()
|