YixuanWang's picture
Update app.py
37190a8 verified
import gradio as gr
import pandas as pd
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from textblob import TextBlob
from typing import List, Dict, Tuple
from dataclasses import dataclass
from pathlib import Path
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class RecommendationWeights:
visibility: float
sentiment: float
popularity: float
class TweetPreprocessor:
def __init__(self, data_path: Path):
self.data = self._load_data(data_path)
self.model_name = "hamzab/roberta-fake-news-classification"
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model, self.tokenizer = self._load_model()
def _load_model(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForSequenceClassification.from_pretrained(self.model_name).to(self.device)
return model, tokenizer
@staticmethod
def _load_data(data_path: Path) -> pd.DataFrame:
try:
data = pd.read_csv(data_path)
required_columns = {'Text', 'Retweets', 'Likes'}
if not required_columns.issubset(data.columns):
raise ValueError(f"Missing required columns: {required_columns - set(data.columns)}")
return data
except Exception as e:
logger.error(f"Error loading data: {e}")
raise
def calculate_metrics(self) -> pd.DataFrame:
# Calculate sentiment
self.data['Sentiment'] = self.data['Text'].apply(lambda x: TextBlob(x).sentiment.polarity)
# Calculate popularity
self.data['Popularity'] = self.data['Retweets'] + self.data['Likes']
self.data['Popularity'] = (self.data['Popularity'] - self.data['Popularity'].mean()) / self.data['Popularity'].std()
self.data['Popularity'] = self.data['Popularity'] / self.data['Popularity'].abs().max()
# Calculate credibility using fake news model
batch_size = 100
predictions = []
for i in range(0, len(self.data), batch_size):
batch = self.data['Text'][i:i + batch_size].tolist()
inputs = self.tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=128)
inputs = {key: val.to(self.device) for key, val in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
predictions.extend(outputs.logits.argmax(dim=1).cpu().numpy())
self.data['Credibility'] = [1 if pred == 1 else -1 for pred in predictions]
return self.data
class RecommendationSystem:
def __init__(self, data_path: Path):
self.preprocessor = TweetPreprocessor(data_path)
self.data = None
self.setup_system()
def setup_system(self):
self.data = self.preprocessor.calculate_metrics()
def get_recommendations(self, weights: RecommendationWeights, num_recommendations: int = 10) -> Dict:
if not self._validate_weights(weights):
return {"error": "Invalid weights provided"}
normalized_weights = self._normalize_weights(weights)
self.data['Final_Score'] = (
self.data['Credibility'] * normalized_weights.visibility +
self.data['Sentiment'] * normalized_weights.sentiment +
self.data['Popularity'] * normalized_weights.popularity
)
top_recommendations = (
self.data.nlargest(100, 'Final_Score')
.sample(num_recommendations)
)
return self._format_recommendations(top_recommendations)
def _format_recommendations(self, recommendations: pd.DataFrame) -> Dict:
formatted_results = []
for _, row in recommendations.iterrows():
score_details = {
"score": f"{row['Final_Score']:.2f}",
"credibility": "Reliable" if row['Credibility'] > 0 else "Uncertain",
"sentiment": self._get_sentiment_label(row['Sentiment']),
"popularity": f"{row['Popularity']:.2f}",
"engagement": f"Likes {row['Likes']} · Retweets {row['Retweets']}"
}
formatted_results.append({
"text": row['Text'],
"scores": score_details
})
return {
"recommendations": formatted_results,
"score_explanation": self._get_score_explanation()
}
@staticmethod
def _get_sentiment_label(sentiment_score: float) -> str:
if sentiment_score > 0.3:
return "Positive"
elif sentiment_score < -0.3:
return "Negative"
return "Neutral"
@staticmethod
def _validate_weights(weights: RecommendationWeights) -> bool:
return all(getattr(weights, field) >= 0 for field in weights.__dataclass_fields__)
@staticmethod
def _normalize_weights(weights: RecommendationWeights) -> RecommendationWeights:
total = weights.visibility + weights.sentiment + weights.popularity
if total == 0:
return RecommendationWeights(1/3, 1/3, 1/3)
return RecommendationWeights(
visibility=weights.visibility / total,
sentiment=weights.sentiment / total,
popularity=weights.popularity / total
)
@staticmethod
def _get_score_explanation() -> Dict[str, str]:
return {
"Credibility": "Content reliability assessment",
"Sentiment": "Text emotional analysis result",
"Popularity": "Score based on likes and retweets"
}
def create_gradio_interface(recommendation_system: RecommendationSystem) -> gr.Interface:
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# Tweet Recommendation System
Adjust weights to get personalized recommendations
Note: To protect user privacy, some tweet content has been redacted or anonymized.
""")
with gr.Row():
with gr.Column(scale=1):
visibility_weight = gr.Slider(0, 1, 0.5, label="Credibility Weight", info="Adjust importance of content credibility")
sentiment_weight = gr.Slider(0, 1, 0.3, label="Sentiment Weight", info="Adjust importance of emotional tone")
popularity_weight = gr.Slider(0, 1, 0.2, label="Popularity Weight", info="Adjust importance of engagement metrics")
submit_btn = gr.Button("Get Recommendations", variant="primary")
with gr.Column(scale=2):
output_html = gr.HTML()
def format_recommendations(raw_recommendations):
html = '<div style="font-family: sans-serif;">'
html += '''
<div style="margin-bottom: 20px; padding: 15px; background-color: #1a1a1a; color: white; border-radius: 8px;">
<h3 style="margin-top: 0;">Score Guide</h3>
<ul style="margin: 0;">
<li><strong>Credibility</strong>: Assessment of content reliability</li>
<li><strong>Sentiment</strong>: Text emotional analysis (Positive/Negative/Neutral)</li>
<li><strong>Popularity</strong>: Normalized score based on likes and retweets</li>
</ul>
</div>
'''
for i, rec in enumerate(raw_recommendations["recommendations"], 1):
scores = rec["scores"]
html += f'''
<div style="margin-bottom: 15px; padding: 15px; border: 1px solid #ddd; border-radius: 8px;">
<div style="margin-bottom: 10px; font-size: 1.1em;">{rec["text"]}</div>
<div style="display: flex; flex-wrap: wrap; gap: 10px; font-size: 0.9em;">
<span style="padding: 3px 8px; background-color: #1976d2; color: white; border-radius: 4px;">
Score: {scores["score"]}
</span>
<span style="padding: 3px 8px; background-color: #2e7d32; color: white; border-radius: 4px;">
Credibility: {scores["credibility"]}
</span>
<span style="padding: 3px 8px; background-color: #ed6c02; color: white; border-radius: 4px;">
Sentiment: {scores["sentiment"]}
</span>
<span style="padding: 3px 8px; background-color: #d32f2f; color: white; border-radius: 4px;">
Popularity: {scores["popularity"]}
</span>
<span style="padding: 3px 8px; background-color: #7b1fa2; color: white; border-radius: 4px;">
Engagement: {scores["engagement"]}
</span>
</div>
</div>
'''
html += '</div>'
return html
def get_recommendations_with_weights(v, s, p):
weights = RecommendationWeights(v, s, p)
return format_recommendations(recommendation_system.get_recommendations(weights))
submit_btn.click(
fn=get_recommendations_with_weights,
inputs=[visibility_weight, sentiment_weight, popularity_weight],
outputs=output_html
)
return interface
def main():
try:
recommendation_system = RecommendationSystem(
data_path=Path('twitter_dataset.csv')
)
interface = create_gradio_interface(recommendation_system)
interface.launch()
except Exception as e:
logger.error(f"Application failed to start: {e}")
raise
if __name__ == "__main__":
main()