root
first commit
7a919c0
# yyj
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import pandas as pd
import os
import json
from loguru import logger
import faiss
class Clusterer():
def __init__(self,
text: list,
text_embedding:np.array,
n_clusters: list|int):
self.text = text
self.text_embedding = text_embedding
self.n_clusters = n_clusters
# https://github.com/facebookresearch/faiss/issues/1875
def _silhouette_score(self, cluster_index, samples) -> float:
distance, _ = cluster_index.search(samples, 2)
# a = distance[:, 0], b = distance[:, 1]
# s = (b - a) / np.max(a, b)
s = (distance[:, 1] - distance[:, 0]) / np.max(distance, 1)
return s.mean()
# def _find_best_nclusters(self):
# silhouette_scores = []
# cluster_range = range(self.cluster_range[0], self.cluster_range[1],5)
# nparray = np.array(self.text_embedding)
# n, d = nparray.shape # 获取数据点的数量和维度
# x = nparray.astype('float32') # 转换数据类型为float32
# niter = 20
# verbose = True
# for ncentroids in cluster_range:
# kmeans = faiss.Kmeans(d, ncentroids, niter=niter, verbose=verbose)
# kmeans.train(x)
# scores = self._silhouette_score(kmeans.index, x)
# silhouette_scores.append(scores)
# self.result = zip(cluster_range, silhouette_scores)
# best_n_clusters = cluster_range[silhouette_scores.index(max(silhouette_scores))]
# logger.info(f"Optimal number of clusters: {best_n_clusters}")
# if best_n_clusters < 10:
# logger.debug('Number of clusters is less than 10, please check the data, set to default 10')
# self.n_clusters = 10
# else:
# self.n_clusters = best_n_clusters
def kmeanscluster(self, n_clusters: int = None):
'''
input:
- random_state: int, random state for kmeans
output:
- cluster labels saved to metadata
'''
if self.text_embedding is None:
raise ValueError('No embeddings of repo found, please run generate_embeddings first')
logger.info(f'Using n_clusters: {n_clusters}')
nparray = np.array(self.text_embedding)
n, d = nparray.shape # 获取数据点的数量和维度
x = nparray.astype('float32') # 转换数据类型为float32
ncentroids = n_clusters
niter = 100 + (n_clusters - 1) * 10
verbose = True
kmeans = faiss.Kmeans(d, ncentroids, niter=niter, verbose=verbose)
kmeans.train(x)
index = faiss.IndexFlatL2(d)
index.add(x)
D, I = index.search(kmeans.centroids, 10)
samples = {}
for i in range(ncentroids):
samples[i] ={
'cluster': i,
'samples': [self.text[j] for j in I[i]],
'distance': D[i].tolist()
}
score = self._silhouette_score(kmeans.index, x)
logger.info(f'kmeans with k = {n_clusters} complete. Silhouette score: {score}')
result = (n_clusters, score)
return result, samples
def generate_cluster(self, workdir: str):
'''
generate cluster
'''
feature_dir = os.path.join(workdir, 'cluster_features')
if not os.path.exists(feature_dir):
os.makedirs(feature_dir)
results = []
for n_clusters in self.n_clusters:
sub_dir = os.path.join(feature_dir, f'cluster_features_{n_clusters}')
if not os.path.exists(sub_dir):
os.makedirs(sub_dir)
result, samples = self.kmeanscluster(n_clusters)
# save k and score result
results.append(result)
path = os.path.join(sub_dir, f'kresult.txt')
with open(path, 'w') as f:
f.write(str(result))
# save samples
path = os.path.join(sub_dir, f'samples.json')
with open(path, 'w') as f:
json.dump(samples, f,ensure_ascii=False)
# save all results
path = os.path.join(feature_dir, 'all_results.txt')
with open(path, 'w') as f:
for k, score in results:
f.write(f'k={k}, score={score}\n')