File size: 28,012 Bytes
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
558c36e
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73386d5
 
 
 
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
73386d5
 
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73386d5
7a919c0
 
 
 
 
 
 
 
 
 
73386d5
7a919c0
 
 
 
 
 
 
 
3692eb0
7a919c0
 
 
 
 
 
 
 
 
 
 
6f812af
 
 
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f812af
7a919c0
6f812af
 
7a919c0
6f812af
 
 
 
7a919c0
6f812af
7a919c0
6f812af
7a919c0
6f812af
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
73386d5
 
 
 
 
 
 
7a919c0
 
 
73386d5
7a919c0
 
 
 
558c36e
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
6f812af
73386d5
6f812af
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3692eb0
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
558c36e
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3692eb0
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3692eb0
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
558c36e
3692eb0
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
73386d5
 
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73386d5
7a919c0
 
 
 
73386d5
7a919c0
73386d5
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73386d5
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73386d5
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73386d5
 
 
 
 
 
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import argparse
import json
import time
import os
import glob
import random
import shutil
from enum import Enum
from threading import Thread
from multiprocessing import Process, Value

import gradio as gr
import pytoml
from loguru import logger
import spaces

from huixiangdou.service import Worker, llm_serve, ArticleRetrieval, CacheRetriever, FeatureStore, FileOperation

class PARAM_CODE(Enum):
    """Parameter code."""
    SUCCESS = 0
    FAILED = 1
    ERROR = 2

def parse_args():
    """Parse args."""
    parser = argparse.ArgumentParser(description='Worker.')
    parser.add_argument('--work_dir',
                        type=str,
                        default='workdir',
                        help='Working directory.')
    parser.add_argument('--repo_dir',
                        type=str,
                        default='repodir',
                        help='Repository directory.')
    parser.add_argument(
        '--config_path',
        default='config.ini',
        type=str,
        help='Worker configuration path. Default value is config.ini')
    parser.add_argument('--standalone',
                        action='store_true',
                        default=True,
                        help='Auto deploy required Hybrid LLM Service.')
    parser.add_argument("--model_downloaded",
                        type=bool,
                        default=False,
                        help="If the model has been downloaded in the root/models folder. Default is False.")
    args = parser.parse_args()
    return args

def update_remote_buttons(remote):
    if remote:
        return [
                gr.Markdown("[如何配置API]('https://github.com/jabberwockyang/MedicalReviewAgent/blob/main/README.md')",
                            visible=True),
                gr.Dropdown(["kimi", "deepseek", "zhipuai",'gpt'],
                                                label="选择大模型提供商",
                                                interactive=True,visible=True),
                gr.Textbox(label="您的API",lines = 1,
                        interactive=True,visible=True),
                gr.Textbox(label="base url",lines = 1,
                        interactive=True,visible=True),
                gr.Dropdown([],label="选择模型",
                            interactive=True,visible=True)
        ]
    else:
        return [
                gr.Markdown("[如何配置API]('https://github.com/jabberwockyang/MedicalReviewAgent/blob/main/README.md')",
                            visible=False),
                gr.Dropdown(["kimi", "deepseek", "zhipuai",'gpt'],
                                                label="选择大模型提供商",
                                                interactive=False,visible=False),
                gr.Textbox(label="您的API",lines = 1,
                        interactive=False,visible=False),
                gr.Dropdown([],label="选择模型",
                            interactive=False,visible=False)
        ]

def udate_model_dropdown(remote_company):
    model_choices = {
        'kimi': ['moonshot-v1-128k'],
        'deepseek': ['deepseek-chat'],
        'zhipuai': ['glm-4'],
        'gpt': ['gpt-4-32k-0613','gpt-3.5-turbo']
    }
    return gr.Dropdown(choices= model_choices[remote_company])

def update_remote_config(remote_ornot,remote_company = None,api = None,baseurl = None, model = None):
    with open(CONFIG_PATH, encoding='utf8') as f:
        config = pytoml.load(f)
         
        if remote_ornot:
            if remote_company == None or api == None or model == None:
                raise ValueError('remote_company, api, model not provided')
            config['llm']['enable_local'] = 0
            config['llm']['enable_remote'] = 1
            config['llm']['server']['remote_type'] = remote_company
            config['llm']['server']['remote_api_key'] = api
            config['llm']['server']['remote_base_url'] = baseurl
            config['llm']['server']['remote_llm_model'] = model
        else:
            config['llm']['enable_local'] = 1
            config['llm']['enable_remote'] = 0
    with open(CONFIG_PATH, 'w') as f:
        pytoml.dump(config, f)
    return gr.Button("配置已保存")

# @spaces.GPU(duration=120)
def get_ready(query:str,chunksize=None,k=None):
    
    with open(CONFIG_PATH, encoding='utf8') as f:
        config = pytoml.load(f)
    workdir = config['feature_store']['work_dir']
    repodir = config['feature_store']['repo_dir']

    if query == 'repo_work': # no need to return assistant
        return repodir, workdir, config
    theme = ''
    try:
        with open(os.path.join(config['feature_store']['repo_dir'],'info.json'), 'r') as f:
            repo_info = json.load(f)
        theme = ' '.join(repo_info['keywords'])
    except:
        pass

    if query == 'annotation':
        if not chunksize or not k:
            raise ValueError('chunksize or k not provided')
        chunkdir = os.path.join(workdir, f'chunksize_{chunksize}')
        clusterdir = os.path.join(chunkdir, 'cluster_features', f'cluster_features_{k}')
        assistant = Worker(work_dir=chunkdir, config_path=CONFIG_PATH,language='en')
        samples_json = os.path.join(clusterdir,'samples.json')
        with open(samples_json, 'r') as f:
            samples = json.load(f)
            f.close()
        return clusterdir, samples, assistant, theme
    
    elif query == 'inspiration':
        if not chunksize or not k:
            raise ValueError('chunksize or k not provided')
        
        chunkdir = os.path.join(workdir, f'chunksize_{chunksize}')
        clusterdir = os.path.join(chunkdir, 'cluster_features', f'cluster_features_{k}')
        assistant = Worker(work_dir=chunkdir, config_path=CONFIG_PATH,language='en')
        annofile = os.path.join(clusterdir,'annotation.jsonl')
        with open(annofile, 'r') as f:
            annoresult = f.readlines()

            f.close()
        annoresult = [json.loads(obj) for obj in annoresult]
        return clusterdir, annoresult, assistant, theme
    elif query == 'summarize': # no need for params k
        if not chunksize:
            raise ValueError('chunksize not provided')
        chunkdir = os.path.join(workdir, f'chunksize_{chunksize}')
        assistant = Worker(work_dir=chunkdir, config_path=CONFIG_PATH,language='en')
        return assistant,theme

    else:
        raise ValueError('query not recognized')
            
def update_repo_info():
    with open(CONFIG_PATH, encoding='utf8') as f:
        config = pytoml.load(f)
    repodir = config['feature_store']['repo_dir']
    if os.path.exists(repodir):
        pdffiles = glob.glob(os.path.join(repodir, '*.pdf'))
        number_of_pdf = len(pdffiles)
        if os.path.exists(os.path.join(repodir,'info.json')):
                
            with open(os.path.join(repodir,'info.json'), 'r') as f:
                repo_info = json.load(f)

            keywords = repo_info['keywords']
            length = repo_info['len']
            retmax = repo_info['retmax']
            failed = repo_info['failed_pmids']

            return keywords,length,retmax,failed,number_of_pdf
        else:
            return None,None,None,None,number_of_pdf
    else:
        return None,None,None,None,None
               
def upload_file(files):
    repodir, workdir, _ = get_ready('repo_work')
    if not os.path.exists(repodir):
        os.makedirs(repodir)

    for file in files:
        destination_path = os.path.join(repodir, os.path.basename(file.name))

        shutil.copy(file.name, destination_path)
    

    return files

def generate_articles_repo(strings:str,retmax:int):
    
    string = [k.strip() for k in strings.split('\n')]

    pmids = [k for k in string if k.isdigit()]
    keys = [k for k in string if not k.isdigit()]
    
    repodir, _, _ = get_ready('repo_work')

    articelfinder = ArticleRetrieval(keywords = keys,
                                     pmids = pmids,
                                     repo_dir = repodir,
                                     retmax = retmax)
    articelfinder.initiallize()
    return update_repo()

def delete_articles_repo():
    # 在这里运行生成数据库的函数
    repodir, workdir, _ = get_ready('repo_work')
    if os.path.exists(repodir):
        shutil.rmtree(repodir)
    if os.path.exists(workdir):
        shutil.rmtree(workdir)

    return gr.Textbox(label="文献库概况",lines =3,
                      value = '文献库和相关数据库已删除',
                      visible = True)

def update_repo():
    keys,len,retmax,failed,pdflen = update_repo_info()
    if keys or len:
        newinfo = f"搜索得到文献:\n    关键词:{keys}\n    文献数量:{len}\n    获取上限:{retmax}\n    失败PMID:{failed}\n\n上传文献:\n    数量:{pdflen}"
    else:
        if pdflen:
            newinfo = f'搜索得到文献:无\n上传文献:\n    数量:{pdflen}'
        else:
            newinfo = '目前还没有文献库'

    return gr.Textbox(label="文献库概况",lines =1,
                      value = newinfo,
                      visible = True)

def update_database_info():
    with open(CONFIG_PATH, encoding='utf8') as f:
        config = pytoml.load(f)
    workdir = config['feature_store']['work_dir']
    chunkdirs = glob.glob(os.path.join(workdir, 'chunksize_*'))
    chunkdirs.sort()
    list_of_chunksize = [int(chunkdir.split('_')[-1]) for chunkdir in chunkdirs]
    # print(list_of_chunksize)
    jsonobj = {}
    for chunkdir in chunkdirs:
        k_dir = glob.glob(os.path.join(chunkdir, 'cluster_features','cluster_features_*'))
        k_dir.sort()
        list_of_k = [int(k.split('_')[-1]) for k in k_dir]
        jsonobj[int(chunkdir.split('_')[-1])] = list_of_k
        

    new_options = [f"chunksize:{chunksize}, k:{k}" for chunksize in list_of_chunksize for k in jsonobj[chunksize]]
    
    return new_options, jsonobj

@spaces.GPU(duration=120)
def generate_database(chunksize:int,nclusters:str|list[str]):
    # 在这里运行生成数据库的函数
    repodir, workdir, _ = get_ready('repo_work')
    if not os.path.exists(repodir):
        return gr.Textbox(label="数据库已生成",value = '请先生成文献库',visible = True)
    nclusters = [int(i) for i in nclusters]
    # 文献库和数据库的覆盖删除逻辑待定 
    # 理论上 文献库只能生成一次 所以每次生成文献库都要删除之前的文献库和数据库
    # 数据库可以根据文献库多次生成 暂不做删除 目前没有节省算力的逻辑 重复计算后覆盖 以后优化 
    # 不同的chunksize和nclusters会放在不同的文件夹下 不会互相覆盖
    # if os.path.exists(workdir):
    #     shutil.rmtree(workdir)

    cache = CacheRetriever(config_path=CONFIG_PATH)
    fs_init = FeatureStore(embeddings=cache.embeddings,
                           reranker=cache.reranker,
                            chunk_size=chunksize,
                            n_clusters=nclusters,
                           config_path=CONFIG_PATH)

    # walk all files in repo dir
    file_opr = FileOperation()
    files = file_opr.scan_dir(repo_dir=repodir)
    fs_init.initialize(files=files, work_dir=workdir,file_opr=file_opr)
    file_opr.summarize(files)
    del fs_init
    cache.pop('default')
    texts, _ = update_database_info()
    return gr.Textbox(label="数据库概况",value = '\n'.join(texts) ,visible = True)

def delete_database():
    _, workdir, _ = get_ready('repo_work')
    if os.path.exists(workdir):
        shutil.rmtree(workdir)
    return  gr.Textbox(label="数据库概况",lines =3,value = '数据库已删除',visible = True)

def update_database_textbox():
    texts, _ = update_database_info()
    if texts == []:
        return gr.Textbox(label="数据库概况",value = '目前还没有数据库',visible = True)
    else:
        return gr.Textbox(label="数据库概况",value = '\n'.join(texts),visible = True)

def update_chunksize_dropdown():
    _, jsonobj = update_database_info()
    return gr.Dropdown(choices= jsonobj.keys())

def update_ncluster_dropdown(chunksize:int):
    _, jsonobj = update_database_info()
    nclusters = jsonobj[chunksize]
    return gr.Dropdown(choices= nclusters)

# @spaces.GPU(duration=120)
def annotation(n,chunksize:int,nclusters:int,remote_ornot:bool):
    '''
    use llm to annotate cluster
    n: percentage of clusters to annotate
    '''
    query = 'annotation'
    if remote_ornot:
        backend = 'remote'
    else:
        backend = 'local'

    clusterdir, samples, assistant, theme = get_ready('annotation',chunksize,nclusters)
    new_obj_list = []
    n = round(n * len(samples.keys()))
    for cluster_no in random.sample(samples.keys(), n):
        chunk = '\n'.join(samples[cluster_no]['samples'][:10])

        code, reply, cluster_no = assistant.annotate_cluster(
                                                theme = theme,
                                                cluster_no=cluster_no,
                                                chunk=chunk,
                                                history=[],
                                                groupname='',
                                                backend=backend)
        references = f"cluster_no: {cluster_no}"
        new_obj = {
            'cluster_no': cluster_no,
            'chunk': chunk,
            'annotation': reply
        }
        new_obj_list.append(new_obj)
        logger.info(f'{code}, {query}, {reply}, {references}')

        with open(os.path.join(clusterdir, 'annotation.jsonl'), 'a') as f:
            json.dump(new_obj, f, ensure_ascii=False)
            f.write('\n')
            
    return '\n\n'.join([obj['annotation'] for obj in new_obj_list])

# @spaces.GPU(duration=120)
def inspiration(annotation:str,chunksize:int,nclusters:int,remote_ornot:bool):
    query = 'inspiration'
    if remote_ornot:
        backend = 'remote'
    else:
        backend = 'local'
        
    clusterdir, annoresult, assistant, theme = get_ready('inspiration',chunksize,nclusters)
    new_obj_list = []

    if annotation is not None: # if the user wants to get inspiration from specific clusters only  
        annoresult = [obj for obj in annoresult if obj['annotation'] in [txt.strip() for txt in annotation.split('\n')]]
    
    for index in random.sample(range(len(annoresult)), min(5, len(annoresult))):
        cluster_no = annoresult[index]['cluster_no']
        chunks = annoresult[index]['annotation']
        
        code, reply = assistant.getinspiration(
                                                theme = theme,
                                                annotations = chunks,
                                                history=[], 
                                                groupname='',backend=backend)
        new_obj = {
            'inspiration': reply,
            'cluster_no': cluster_no
        }
        new_obj_list.append(new_obj)
        logger.info(f'{code}, {query}, {cluster_no},{reply}')

        with open(os.path.join(clusterdir, 'inspiration.jsonl'), 'a') as f:
            json.dump(new_obj, f, ensure_ascii=False)
        with open(os.path.join(clusterdir, 'inspiration.txt'), 'a') as f:
            f.write(f'{reply}\n')
            
    return '\n\n'.join(list(set([obj['inspiration'] for obj in new_obj_list])))


def getpmcurls(references):
    urls = []
    for ref in references:
        if ref.startswith('PMC'):
            
            refid = ref.replace('.txt','')
            urls.append(f'https://www.ncbi.nlm.nih.gov/pmc/articles/{refid}/')
        else:
            urls.append(ref)
    return urls
    
@spaces.GPU(duration=120)
def summarize_text(query,chunksize:int,remote_ornot:bool):
    if remote_ornot:
        backend = 'remote'
    else:
        backend = 'local'
        
    assistant,_ = get_ready('summarize',chunksize=chunksize,k=None)
    code, reply, references = assistant.generate(query=query,
                                                history=[],
                                                groupname='',backend = backend)
      
    logger.info(f'{code}, {query}, {reply}, {references}')
    urls = getpmcurls(references)
    mds = '\n\n'.join([f'[{ref}]({url})' for ref,url in zip(references,urls)])
    return gr.Markdown(label="看看",value = reply,line_breaks=True) , gr.Markdown(label="参考文献",value = mds,line_breaks=True) 

def main_interface():   
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown(
                """
                # 医学文献综述助手 (又名 不想看文献)
                """
            )

        with gr.Tab("模型服务配置"):
            gr.Markdown("""
            #### 配置模型服务 🛠️

            1. **是否使用远程大模型**
            - 勾选此项,如果你想使用远程的大模型服务。
            - 如果不勾选,将默认使用本地模型服务。

            2. **API配置**
            - 配置大模型提供商和API,确保模型服务能够正常运行。
            - 提供商选择:kimi、deepseek、zhipuai、gpt。
            - 输入您的API密钥和选择对应模型。
            - 点击“保存配置”按钮以保存您的设置。

            📝 **备注**:请参考[如何使用]('https://github.com/jabberwockyang/MedicalReviewAgent/blob/main/README.md')获取更多信息。

            """)

            remote_ornot = gr.Checkbox(label="是否使用远程大模型")
            with gr.Accordion("API配置", open=True):
                apimd = gr.Markdown("[如何配置API]('https://github.com/jabberwockyang/MedicalReviewAgent/blob/main/README.md')",visible=False)
                remote_company = gr.Dropdown(["kimi", "deepseek", "zhipuai",'gpt'],
                                            label="选择大模型提供商",interactive=False,visible=False)
                api = gr.Textbox(label="您的API",lines = 1,interactive=False,visible=False)
                baseurl = gr.Textbox(label="base url",lines = 1,interactive=False,visible=False)
                model = gr.Dropdown([],label="选择模型",interactive=False,visible=False)
            
            confirm_button = gr.Button("保存配置")

            remote_ornot.change(update_remote_buttons, inputs=[remote_ornot],outputs=[apimd,remote_company,api,baseurl,model])
            remote_company.change(udate_model_dropdown, inputs=[remote_company],outputs=[model])
            confirm_button.click(update_remote_config, inputs=[remote_ornot,remote_company,api,baseurl,model],outputs=[confirm_button])


        with gr.Tab("文献查找+数据库生成"):
            gr.Markdown("""
#### 查找文献 📚

1. **输入关键词批量PubMed PMC文献**
   - 在“感兴趣的关键词”框中输入您感兴趣的关键词,每行一个。
   - 设置查找数量(0-1000)。
   - 点击“搜索PubMed PMC”按钮进行文献查找。

2. **上传PDF**
   - 通过“上传PDF”按钮上传您已有的PDF文献文件。

3. **更新文献库情况 删除文献库**
   - 点击“更新文献库情况”按钮,查看当前文献库的概况。
   - 如果需要重置或删除现有文献库,点击“删除文献库”按钮。


#### 生成数据库 🗂️

1. **设置数据库构建参数 生成数据库**
   - 选择块大小(Chunk Size)和聚类数(Number of Clusters)。
   - 提供选项用于选择合适的块大小和聚类数。
   - 点击“生成数据库”按钮开始数据库生成过程。

2. **更新数据库情况 删除数据库**
   - 点击“更新数据库情况”按钮,查看当前数据库的概况。
   - 点击“删除数据库”按钮移除现有数据库。

📝 **备注**:请参考[如何选择数据库构建参数]('https://github.com/jabberwockyang/MedicalReviewAgent/tree/main')获取更多信息。
""")
            with gr.Row(equal_height=True):
                with gr.Column(scale=1):
                    input_keys = gr.Textbox(label="感兴趣的关键词",
                                            value = "输入关键词或者PMID, 换行分隔",
                                                    lines = 5)
                    retmax = gr.Slider(
                            minimum=0,
                            maximum=1000,
                            value=500,
                            interactive=True,
                            label="查多少",
                        )
                    generate_repo_button = gr.Button("搜索PubMed PMC")
                with gr.Column(scale=2):
                    file_output = gr.File(scale=2)
                    upload_button = gr.UploadButton("上传PDF", 
                                    file_types=[".pdf",".csv",".doc"], 
                                    file_count="multiple",scale=0)
                    
            with gr.Row(equal_height=True):
                with gr.Column(scale=0):
                    delete_repo_button = gr.Button("删除文献库")
                    update_repo_button = gr.Button("更新文献库情况")
                with gr.Column(scale=2):

                    repo_summary =gr.Textbox(label= '文献库概况', value="目前还没有文献库")

            generate_repo_button.click(generate_articles_repo, 
                                inputs=[input_keys,retmax],
                                outputs = [repo_summary])
            
            
            delete_repo_button.click(delete_articles_repo, inputs=None,
                                outputs = repo_summary)
            update_repo_button.click(update_repo, inputs=None,
                                outputs = repo_summary)
            upload_button.upload(upload_file, upload_button, file_output)
            
            with gr.Accordion("数据库构建参数", open=True):
                gr.Markdown("[如何选择数据库构建参数]('https://github.com/jabberwockyang/MedicalReviewAgent/tree/main')")
                chunksize = gr.Slider(label="Chunk Size",
                                      info= 'How long you want the chunk to be?',
                                        minimum=128, maximum=4096,value=1024,step=1,
                                        interactive=True)
                ncluster = gr.CheckboxGroup(["10", "20", "50", '100','200','500','1000'], 
                                            # default=["20", "50", '100'],
                                            label="Number of Clusters", 
                                            info="How many Clusters you want to generate")

            with gr.Row():
                gene_database_button = gr.Button("生成数据库")
                delete_database_button = gr.Button("删除数据库")
                update_database_button = gr.Button("更新数据库情况")

            database_summary = gr.Textbox(label="数据库概况",lines = 1,value="目前还没有数据库")
            

            gene_database_button.click(generate_database, inputs=[chunksize,ncluster],
                                outputs = database_summary)
            
            update_database_button.click(update_database_textbox,inputs=None,
                                outputs = [database_summary])
                                         
            delete_database_button.click(delete_database, inputs=None,
                                outputs = database_summary)
        with gr.Tab("写综述"):
            gr.Markdown("""
#### 写综述 ✍️

1. **更新数据库情况**
   - 点击“更新数据库情况”按钮,确保使用最新的数据库信息。

2. **选择块大小和聚类数**
   - 从下拉菜单中选择合适的块大小和聚类数。

3. **抽样标注文章聚类**
   - 设置抽样标注比例(0-1)。
   - 点击“抽样标注文章聚类”按钮开始标注过程。

4. **获取灵感**
   - 如果不知道写什么,点击“获取灵感”按钮。
   - 系统将基于标注的文章聚类提供相应的综述子问题。

5. **写综述**
   - 输入您想写的内容或主题。
   - 点击“写综述”按钮,生成综述文本。

6. **查看生成结果**
   - 生成的综述文本将显示在“看看”文本框中。
   - 参考文献将显示在“参考文献”框中。

📝 **备注**:可以尝试不同的参数进行标注和灵感获取,有助于提高综述的质量和相关性。
            """)

            with gr.Accordion("聚类标注相关参数", open=True):
                with gr.Row():
                    update_options = gr.Button("更新数据库情况", scale=0)
                    chunksize = gr.Dropdown([], label="选择块大小", scale=0)
                    nclusters = gr.Dropdown([], label="选择聚类数", scale=0)
                    ntoread = gr.Slider(
                            minimum=0,maximum=1,value=0.5,
                            interactive=True,
                            label="抽样标注比例",
                        )

            annotation_button = gr.Button("抽样标注文章聚类")
            annotation_output =  gr.Textbox(label="文章聚类标注/片段摘要",
                                            lines = 5, 
                                            interactive= True,
                                            show_copy_button=True)
            inspiration_button = gr.Button("获取灵感")
            inspiration_output = gr.Textbox(label="灵光一现",
                                            lines = 5,
                                            show_copy_button=True)


            query = gr.Textbox(label="想写什么")
            
            write_button = gr.Button("写综述")
            output_text = gr.Markdown(label="看看")
            output_references = gr.Markdown(label="参考文献")
            
            update_options.click(update_chunksize_dropdown,
                                outputs=[chunksize])
            
            chunksize.change(update_ncluster_dropdown, 
                             inputs=[chunksize],
                             outputs= [nclusters])
            
            annotation_button.click(annotation, 
                                    inputs = [ntoread, chunksize, nclusters,remote_ornot],
                                    outputs=[annotation_output])
            
            inspiration_button.click(inspiration, 
                                     inputs= [annotation_output, chunksize, nclusters,remote_ornot],
                                     outputs=[inspiration_output])
            
            write_button.click(summarize_text,
                                inputs=[query, chunksize,remote_ornot],
                                outputs =[output_text,output_references])

    demo.launch(share=False, server_name='0.0.0.0', debug=True,show_error=True,allowed_paths=['img_0.jpg']) 
 
# start service
if __name__ == '__main__':
    args = parse_args()
    # copy config from config-bak 
    if args.model_downloaded:
        shutil.copy('config-mod_down-bak.ini', args.config_path) # yyj
    else:
        shutil.copy('config-bak.ini', args.config_path) # yyj

    CONFIG_PATH = args.config_path

    if args.standalone is True:
        # hybrid llm serve
        server_ready = Value('i', 0)
        server_process = Process(target=llm_serve,
                                args=(args.config_path, server_ready))
        server_process.start()
        while True:
            if server_ready.value == 0:
                logger.info('waiting for server to be ready..')
                time.sleep(3)
            elif server_ready.value == 1:
                break
            else:
                logger.error('start local LLM server failed, quit.')
                raise Exception('local LLM path')
        logger.info('Hybrid LLM Server start.')

    main_interface()