Spaces:
Runtime error
Runtime error
File size: 28,012 Bytes
7a919c0 558c36e 7a919c0 73386d5 7a919c0 73386d5 7a919c0 73386d5 7a919c0 73386d5 7a919c0 3692eb0 7a919c0 6f812af 7a919c0 6f812af 7a919c0 6f812af 7a919c0 6f812af 7a919c0 6f812af 7a919c0 6f812af 7a919c0 6f812af 7a919c0 73386d5 7a919c0 73386d5 7a919c0 558c36e 7a919c0 6f812af 73386d5 6f812af 7a919c0 3692eb0 7a919c0 558c36e 7a919c0 3692eb0 7a919c0 3692eb0 7a919c0 558c36e 3692eb0 7a919c0 73386d5 7a919c0 73386d5 7a919c0 73386d5 7a919c0 73386d5 7a919c0 73386d5 7a919c0 73386d5 7a919c0 73386d5 7a919c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
import argparse
import json
import time
import os
import glob
import random
import shutil
from enum import Enum
from threading import Thread
from multiprocessing import Process, Value
import gradio as gr
import pytoml
from loguru import logger
import spaces
from huixiangdou.service import Worker, llm_serve, ArticleRetrieval, CacheRetriever, FeatureStore, FileOperation
class PARAM_CODE(Enum):
"""Parameter code."""
SUCCESS = 0
FAILED = 1
ERROR = 2
def parse_args():
"""Parse args."""
parser = argparse.ArgumentParser(description='Worker.')
parser.add_argument('--work_dir',
type=str,
default='workdir',
help='Working directory.')
parser.add_argument('--repo_dir',
type=str,
default='repodir',
help='Repository directory.')
parser.add_argument(
'--config_path',
default='config.ini',
type=str,
help='Worker configuration path. Default value is config.ini')
parser.add_argument('--standalone',
action='store_true',
default=True,
help='Auto deploy required Hybrid LLM Service.')
parser.add_argument("--model_downloaded",
type=bool,
default=False,
help="If the model has been downloaded in the root/models folder. Default is False.")
args = parser.parse_args()
return args
def update_remote_buttons(remote):
if remote:
return [
gr.Markdown("[如何配置API]('https://github.com/jabberwockyang/MedicalReviewAgent/blob/main/README.md')",
visible=True),
gr.Dropdown(["kimi", "deepseek", "zhipuai",'gpt'],
label="选择大模型提供商",
interactive=True,visible=True),
gr.Textbox(label="您的API",lines = 1,
interactive=True,visible=True),
gr.Textbox(label="base url",lines = 1,
interactive=True,visible=True),
gr.Dropdown([],label="选择模型",
interactive=True,visible=True)
]
else:
return [
gr.Markdown("[如何配置API]('https://github.com/jabberwockyang/MedicalReviewAgent/blob/main/README.md')",
visible=False),
gr.Dropdown(["kimi", "deepseek", "zhipuai",'gpt'],
label="选择大模型提供商",
interactive=False,visible=False),
gr.Textbox(label="您的API",lines = 1,
interactive=False,visible=False),
gr.Dropdown([],label="选择模型",
interactive=False,visible=False)
]
def udate_model_dropdown(remote_company):
model_choices = {
'kimi': ['moonshot-v1-128k'],
'deepseek': ['deepseek-chat'],
'zhipuai': ['glm-4'],
'gpt': ['gpt-4-32k-0613','gpt-3.5-turbo']
}
return gr.Dropdown(choices= model_choices[remote_company])
def update_remote_config(remote_ornot,remote_company = None,api = None,baseurl = None, model = None):
with open(CONFIG_PATH, encoding='utf8') as f:
config = pytoml.load(f)
if remote_ornot:
if remote_company == None or api == None or model == None:
raise ValueError('remote_company, api, model not provided')
config['llm']['enable_local'] = 0
config['llm']['enable_remote'] = 1
config['llm']['server']['remote_type'] = remote_company
config['llm']['server']['remote_api_key'] = api
config['llm']['server']['remote_base_url'] = baseurl
config['llm']['server']['remote_llm_model'] = model
else:
config['llm']['enable_local'] = 1
config['llm']['enable_remote'] = 0
with open(CONFIG_PATH, 'w') as f:
pytoml.dump(config, f)
return gr.Button("配置已保存")
# @spaces.GPU(duration=120)
def get_ready(query:str,chunksize=None,k=None):
with open(CONFIG_PATH, encoding='utf8') as f:
config = pytoml.load(f)
workdir = config['feature_store']['work_dir']
repodir = config['feature_store']['repo_dir']
if query == 'repo_work': # no need to return assistant
return repodir, workdir, config
theme = ''
try:
with open(os.path.join(config['feature_store']['repo_dir'],'info.json'), 'r') as f:
repo_info = json.load(f)
theme = ' '.join(repo_info['keywords'])
except:
pass
if query == 'annotation':
if not chunksize or not k:
raise ValueError('chunksize or k not provided')
chunkdir = os.path.join(workdir, f'chunksize_{chunksize}')
clusterdir = os.path.join(chunkdir, 'cluster_features', f'cluster_features_{k}')
assistant = Worker(work_dir=chunkdir, config_path=CONFIG_PATH,language='en')
samples_json = os.path.join(clusterdir,'samples.json')
with open(samples_json, 'r') as f:
samples = json.load(f)
f.close()
return clusterdir, samples, assistant, theme
elif query == 'inspiration':
if not chunksize or not k:
raise ValueError('chunksize or k not provided')
chunkdir = os.path.join(workdir, f'chunksize_{chunksize}')
clusterdir = os.path.join(chunkdir, 'cluster_features', f'cluster_features_{k}')
assistant = Worker(work_dir=chunkdir, config_path=CONFIG_PATH,language='en')
annofile = os.path.join(clusterdir,'annotation.jsonl')
with open(annofile, 'r') as f:
annoresult = f.readlines()
f.close()
annoresult = [json.loads(obj) for obj in annoresult]
return clusterdir, annoresult, assistant, theme
elif query == 'summarize': # no need for params k
if not chunksize:
raise ValueError('chunksize not provided')
chunkdir = os.path.join(workdir, f'chunksize_{chunksize}')
assistant = Worker(work_dir=chunkdir, config_path=CONFIG_PATH,language='en')
return assistant,theme
else:
raise ValueError('query not recognized')
def update_repo_info():
with open(CONFIG_PATH, encoding='utf8') as f:
config = pytoml.load(f)
repodir = config['feature_store']['repo_dir']
if os.path.exists(repodir):
pdffiles = glob.glob(os.path.join(repodir, '*.pdf'))
number_of_pdf = len(pdffiles)
if os.path.exists(os.path.join(repodir,'info.json')):
with open(os.path.join(repodir,'info.json'), 'r') as f:
repo_info = json.load(f)
keywords = repo_info['keywords']
length = repo_info['len']
retmax = repo_info['retmax']
failed = repo_info['failed_pmids']
return keywords,length,retmax,failed,number_of_pdf
else:
return None,None,None,None,number_of_pdf
else:
return None,None,None,None,None
def upload_file(files):
repodir, workdir, _ = get_ready('repo_work')
if not os.path.exists(repodir):
os.makedirs(repodir)
for file in files:
destination_path = os.path.join(repodir, os.path.basename(file.name))
shutil.copy(file.name, destination_path)
return files
def generate_articles_repo(strings:str,retmax:int):
string = [k.strip() for k in strings.split('\n')]
pmids = [k for k in string if k.isdigit()]
keys = [k for k in string if not k.isdigit()]
repodir, _, _ = get_ready('repo_work')
articelfinder = ArticleRetrieval(keywords = keys,
pmids = pmids,
repo_dir = repodir,
retmax = retmax)
articelfinder.initiallize()
return update_repo()
def delete_articles_repo():
# 在这里运行生成数据库的函数
repodir, workdir, _ = get_ready('repo_work')
if os.path.exists(repodir):
shutil.rmtree(repodir)
if os.path.exists(workdir):
shutil.rmtree(workdir)
return gr.Textbox(label="文献库概况",lines =3,
value = '文献库和相关数据库已删除',
visible = True)
def update_repo():
keys,len,retmax,failed,pdflen = update_repo_info()
if keys or len:
newinfo = f"搜索得到文献:\n 关键词:{keys}\n 文献数量:{len}\n 获取上限:{retmax}\n 失败PMID:{failed}\n\n上传文献:\n 数量:{pdflen}"
else:
if pdflen:
newinfo = f'搜索得到文献:无\n上传文献:\n 数量:{pdflen}'
else:
newinfo = '目前还没有文献库'
return gr.Textbox(label="文献库概况",lines =1,
value = newinfo,
visible = True)
def update_database_info():
with open(CONFIG_PATH, encoding='utf8') as f:
config = pytoml.load(f)
workdir = config['feature_store']['work_dir']
chunkdirs = glob.glob(os.path.join(workdir, 'chunksize_*'))
chunkdirs.sort()
list_of_chunksize = [int(chunkdir.split('_')[-1]) for chunkdir in chunkdirs]
# print(list_of_chunksize)
jsonobj = {}
for chunkdir in chunkdirs:
k_dir = glob.glob(os.path.join(chunkdir, 'cluster_features','cluster_features_*'))
k_dir.sort()
list_of_k = [int(k.split('_')[-1]) for k in k_dir]
jsonobj[int(chunkdir.split('_')[-1])] = list_of_k
new_options = [f"chunksize:{chunksize}, k:{k}" for chunksize in list_of_chunksize for k in jsonobj[chunksize]]
return new_options, jsonobj
@spaces.GPU(duration=120)
def generate_database(chunksize:int,nclusters:str|list[str]):
# 在这里运行生成数据库的函数
repodir, workdir, _ = get_ready('repo_work')
if not os.path.exists(repodir):
return gr.Textbox(label="数据库已生成",value = '请先生成文献库',visible = True)
nclusters = [int(i) for i in nclusters]
# 文献库和数据库的覆盖删除逻辑待定
# 理论上 文献库只能生成一次 所以每次生成文献库都要删除之前的文献库和数据库
# 数据库可以根据文献库多次生成 暂不做删除 目前没有节省算力的逻辑 重复计算后覆盖 以后优化
# 不同的chunksize和nclusters会放在不同的文件夹下 不会互相覆盖
# if os.path.exists(workdir):
# shutil.rmtree(workdir)
cache = CacheRetriever(config_path=CONFIG_PATH)
fs_init = FeatureStore(embeddings=cache.embeddings,
reranker=cache.reranker,
chunk_size=chunksize,
n_clusters=nclusters,
config_path=CONFIG_PATH)
# walk all files in repo dir
file_opr = FileOperation()
files = file_opr.scan_dir(repo_dir=repodir)
fs_init.initialize(files=files, work_dir=workdir,file_opr=file_opr)
file_opr.summarize(files)
del fs_init
cache.pop('default')
texts, _ = update_database_info()
return gr.Textbox(label="数据库概况",value = '\n'.join(texts) ,visible = True)
def delete_database():
_, workdir, _ = get_ready('repo_work')
if os.path.exists(workdir):
shutil.rmtree(workdir)
return gr.Textbox(label="数据库概况",lines =3,value = '数据库已删除',visible = True)
def update_database_textbox():
texts, _ = update_database_info()
if texts == []:
return gr.Textbox(label="数据库概况",value = '目前还没有数据库',visible = True)
else:
return gr.Textbox(label="数据库概况",value = '\n'.join(texts),visible = True)
def update_chunksize_dropdown():
_, jsonobj = update_database_info()
return gr.Dropdown(choices= jsonobj.keys())
def update_ncluster_dropdown(chunksize:int):
_, jsonobj = update_database_info()
nclusters = jsonobj[chunksize]
return gr.Dropdown(choices= nclusters)
# @spaces.GPU(duration=120)
def annotation(n,chunksize:int,nclusters:int,remote_ornot:bool):
'''
use llm to annotate cluster
n: percentage of clusters to annotate
'''
query = 'annotation'
if remote_ornot:
backend = 'remote'
else:
backend = 'local'
clusterdir, samples, assistant, theme = get_ready('annotation',chunksize,nclusters)
new_obj_list = []
n = round(n * len(samples.keys()))
for cluster_no in random.sample(samples.keys(), n):
chunk = '\n'.join(samples[cluster_no]['samples'][:10])
code, reply, cluster_no = assistant.annotate_cluster(
theme = theme,
cluster_no=cluster_no,
chunk=chunk,
history=[],
groupname='',
backend=backend)
references = f"cluster_no: {cluster_no}"
new_obj = {
'cluster_no': cluster_no,
'chunk': chunk,
'annotation': reply
}
new_obj_list.append(new_obj)
logger.info(f'{code}, {query}, {reply}, {references}')
with open(os.path.join(clusterdir, 'annotation.jsonl'), 'a') as f:
json.dump(new_obj, f, ensure_ascii=False)
f.write('\n')
return '\n\n'.join([obj['annotation'] for obj in new_obj_list])
# @spaces.GPU(duration=120)
def inspiration(annotation:str,chunksize:int,nclusters:int,remote_ornot:bool):
query = 'inspiration'
if remote_ornot:
backend = 'remote'
else:
backend = 'local'
clusterdir, annoresult, assistant, theme = get_ready('inspiration',chunksize,nclusters)
new_obj_list = []
if annotation is not None: # if the user wants to get inspiration from specific clusters only
annoresult = [obj for obj in annoresult if obj['annotation'] in [txt.strip() for txt in annotation.split('\n')]]
for index in random.sample(range(len(annoresult)), min(5, len(annoresult))):
cluster_no = annoresult[index]['cluster_no']
chunks = annoresult[index]['annotation']
code, reply = assistant.getinspiration(
theme = theme,
annotations = chunks,
history=[],
groupname='',backend=backend)
new_obj = {
'inspiration': reply,
'cluster_no': cluster_no
}
new_obj_list.append(new_obj)
logger.info(f'{code}, {query}, {cluster_no},{reply}')
with open(os.path.join(clusterdir, 'inspiration.jsonl'), 'a') as f:
json.dump(new_obj, f, ensure_ascii=False)
with open(os.path.join(clusterdir, 'inspiration.txt'), 'a') as f:
f.write(f'{reply}\n')
return '\n\n'.join(list(set([obj['inspiration'] for obj in new_obj_list])))
def getpmcurls(references):
urls = []
for ref in references:
if ref.startswith('PMC'):
refid = ref.replace('.txt','')
urls.append(f'https://www.ncbi.nlm.nih.gov/pmc/articles/{refid}/')
else:
urls.append(ref)
return urls
@spaces.GPU(duration=120)
def summarize_text(query,chunksize:int,remote_ornot:bool):
if remote_ornot:
backend = 'remote'
else:
backend = 'local'
assistant,_ = get_ready('summarize',chunksize=chunksize,k=None)
code, reply, references = assistant.generate(query=query,
history=[],
groupname='',backend = backend)
logger.info(f'{code}, {query}, {reply}, {references}')
urls = getpmcurls(references)
mds = '\n\n'.join([f'[{ref}]({url})' for ref,url in zip(references,urls)])
return gr.Markdown(label="看看",value = reply,line_breaks=True) , gr.Markdown(label="参考文献",value = mds,line_breaks=True)
def main_interface():
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(
"""
# 医学文献综述助手 (又名 不想看文献)
"""
)
with gr.Tab("模型服务配置"):
gr.Markdown("""
#### 配置模型服务 🛠️
1. **是否使用远程大模型**
- 勾选此项,如果你想使用远程的大模型服务。
- 如果不勾选,将默认使用本地模型服务。
2. **API配置**
- 配置大模型提供商和API,确保模型服务能够正常运行。
- 提供商选择:kimi、deepseek、zhipuai、gpt。
- 输入您的API密钥和选择对应模型。
- 点击“保存配置”按钮以保存您的设置。
📝 **备注**:请参考[如何使用]('https://github.com/jabberwockyang/MedicalReviewAgent/blob/main/README.md')获取更多信息。
""")
remote_ornot = gr.Checkbox(label="是否使用远程大模型")
with gr.Accordion("API配置", open=True):
apimd = gr.Markdown("[如何配置API]('https://github.com/jabberwockyang/MedicalReviewAgent/blob/main/README.md')",visible=False)
remote_company = gr.Dropdown(["kimi", "deepseek", "zhipuai",'gpt'],
label="选择大模型提供商",interactive=False,visible=False)
api = gr.Textbox(label="您的API",lines = 1,interactive=False,visible=False)
baseurl = gr.Textbox(label="base url",lines = 1,interactive=False,visible=False)
model = gr.Dropdown([],label="选择模型",interactive=False,visible=False)
confirm_button = gr.Button("保存配置")
remote_ornot.change(update_remote_buttons, inputs=[remote_ornot],outputs=[apimd,remote_company,api,baseurl,model])
remote_company.change(udate_model_dropdown, inputs=[remote_company],outputs=[model])
confirm_button.click(update_remote_config, inputs=[remote_ornot,remote_company,api,baseurl,model],outputs=[confirm_button])
with gr.Tab("文献查找+数据库生成"):
gr.Markdown("""
#### 查找文献 📚
1. **输入关键词批量PubMed PMC文献**
- 在“感兴趣的关键词”框中输入您感兴趣的关键词,每行一个。
- 设置查找数量(0-1000)。
- 点击“搜索PubMed PMC”按钮进行文献查找。
2. **上传PDF**
- 通过“上传PDF”按钮上传您已有的PDF文献文件。
3. **更新文献库情况 删除文献库**
- 点击“更新文献库情况”按钮,查看当前文献库的概况。
- 如果需要重置或删除现有文献库,点击“删除文献库”按钮。
#### 生成数据库 🗂️
1. **设置数据库构建参数 生成数据库**
- 选择块大小(Chunk Size)和聚类数(Number of Clusters)。
- 提供选项用于选择合适的块大小和聚类数。
- 点击“生成数据库”按钮开始数据库生成过程。
2. **更新数据库情况 删除数据库**
- 点击“更新数据库情况”按钮,查看当前数据库的概况。
- 点击“删除数据库”按钮移除现有数据库。
📝 **备注**:请参考[如何选择数据库构建参数]('https://github.com/jabberwockyang/MedicalReviewAgent/tree/main')获取更多信息。
""")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_keys = gr.Textbox(label="感兴趣的关键词",
value = "输入关键词或者PMID, 换行分隔",
lines = 5)
retmax = gr.Slider(
minimum=0,
maximum=1000,
value=500,
interactive=True,
label="查多少",
)
generate_repo_button = gr.Button("搜索PubMed PMC")
with gr.Column(scale=2):
file_output = gr.File(scale=2)
upload_button = gr.UploadButton("上传PDF",
file_types=[".pdf",".csv",".doc"],
file_count="multiple",scale=0)
with gr.Row(equal_height=True):
with gr.Column(scale=0):
delete_repo_button = gr.Button("删除文献库")
update_repo_button = gr.Button("更新文献库情况")
with gr.Column(scale=2):
repo_summary =gr.Textbox(label= '文献库概况', value="目前还没有文献库")
generate_repo_button.click(generate_articles_repo,
inputs=[input_keys,retmax],
outputs = [repo_summary])
delete_repo_button.click(delete_articles_repo, inputs=None,
outputs = repo_summary)
update_repo_button.click(update_repo, inputs=None,
outputs = repo_summary)
upload_button.upload(upload_file, upload_button, file_output)
with gr.Accordion("数据库构建参数", open=True):
gr.Markdown("[如何选择数据库构建参数]('https://github.com/jabberwockyang/MedicalReviewAgent/tree/main')")
chunksize = gr.Slider(label="Chunk Size",
info= 'How long you want the chunk to be?',
minimum=128, maximum=4096,value=1024,step=1,
interactive=True)
ncluster = gr.CheckboxGroup(["10", "20", "50", '100','200','500','1000'],
# default=["20", "50", '100'],
label="Number of Clusters",
info="How many Clusters you want to generate")
with gr.Row():
gene_database_button = gr.Button("生成数据库")
delete_database_button = gr.Button("删除数据库")
update_database_button = gr.Button("更新数据库情况")
database_summary = gr.Textbox(label="数据库概况",lines = 1,value="目前还没有数据库")
gene_database_button.click(generate_database, inputs=[chunksize,ncluster],
outputs = database_summary)
update_database_button.click(update_database_textbox,inputs=None,
outputs = [database_summary])
delete_database_button.click(delete_database, inputs=None,
outputs = database_summary)
with gr.Tab("写综述"):
gr.Markdown("""
#### 写综述 ✍️
1. **更新数据库情况**
- 点击“更新数据库情况”按钮,确保使用最新的数据库信息。
2. **选择块大小和聚类数**
- 从下拉菜单中选择合适的块大小和聚类数。
3. **抽样标注文章聚类**
- 设置抽样标注比例(0-1)。
- 点击“抽样标注文章聚类”按钮开始标注过程。
4. **获取灵感**
- 如果不知道写什么,点击“获取灵感”按钮。
- 系统将基于标注的文章聚类提供相应的综述子问题。
5. **写综述**
- 输入您想写的内容或主题。
- 点击“写综述”按钮,生成综述文本。
6. **查看生成结果**
- 生成的综述文本将显示在“看看”文本框中。
- 参考文献将显示在“参考文献”框中。
📝 **备注**:可以尝试不同的参数进行标注和灵感获取,有助于提高综述的质量和相关性。
""")
with gr.Accordion("聚类标注相关参数", open=True):
with gr.Row():
update_options = gr.Button("更新数据库情况", scale=0)
chunksize = gr.Dropdown([], label="选择块大小", scale=0)
nclusters = gr.Dropdown([], label="选择聚类数", scale=0)
ntoread = gr.Slider(
minimum=0,maximum=1,value=0.5,
interactive=True,
label="抽样标注比例",
)
annotation_button = gr.Button("抽样标注文章聚类")
annotation_output = gr.Textbox(label="文章聚类标注/片段摘要",
lines = 5,
interactive= True,
show_copy_button=True)
inspiration_button = gr.Button("获取灵感")
inspiration_output = gr.Textbox(label="灵光一现",
lines = 5,
show_copy_button=True)
query = gr.Textbox(label="想写什么")
write_button = gr.Button("写综述")
output_text = gr.Markdown(label="看看")
output_references = gr.Markdown(label="参考文献")
update_options.click(update_chunksize_dropdown,
outputs=[chunksize])
chunksize.change(update_ncluster_dropdown,
inputs=[chunksize],
outputs= [nclusters])
annotation_button.click(annotation,
inputs = [ntoread, chunksize, nclusters,remote_ornot],
outputs=[annotation_output])
inspiration_button.click(inspiration,
inputs= [annotation_output, chunksize, nclusters,remote_ornot],
outputs=[inspiration_output])
write_button.click(summarize_text,
inputs=[query, chunksize,remote_ornot],
outputs =[output_text,output_references])
demo.launch(share=False, server_name='0.0.0.0', debug=True,show_error=True,allowed_paths=['img_0.jpg'])
# start service
if __name__ == '__main__':
args = parse_args()
# copy config from config-bak
if args.model_downloaded:
shutil.copy('config-mod_down-bak.ini', args.config_path) # yyj
else:
shutil.copy('config-bak.ini', args.config_path) # yyj
CONFIG_PATH = args.config_path
if args.standalone is True:
# hybrid llm serve
server_ready = Value('i', 0)
server_process = Process(target=llm_serve,
args=(args.config_path, server_ready))
server_process.start()
while True:
if server_ready.value == 0:
logger.info('waiting for server to be ready..')
time.sleep(3)
elif server_ready.value == 1:
break
else:
logger.error('start local LLM server failed, quit.')
raise Exception('local LLM path')
logger.info('Hybrid LLM Server start.')
main_interface() |