RVC_HF_V2 / demo.py
Blane187's picture
Update demo.py
70ed516 verified
from original import *
import shutil, glob
from easyfuncs import download_from_url, CachedModels
os.makedirs("dataset",exist_ok=True)
model_library = CachedModels()
from typing import Iterable
import gradio as gr
os.system("python tools/download_models.py") # -> dummy extra
# gr.themes.builder()
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import time
# Applio Theme
class Applio(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.neutral,
secondary_hue: colors.Color | str = colors.neutral,
neutral_hue: colors.Color | str = colors.neutral,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
"Syne V",
fonts.GoogleFont("Syne"),
"ui-sans-serif",
"system-ui",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
"ui-monospace",
fonts.GoogleFont("Nunito Sans"),
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
self.name = ("Applio",)
self.secondary_100 = ("#dbeafe",)
self.secondary_200 = ("#bfdbfe",)
self.secondary_300 = ("#93c5fd",)
self.secondary_400 = ("#60a5fa",)
self.secondary_50 = ("#eff6ff",)
self.secondary_500 = ("#3b82f6",)
self.secondary_600 = ("#2563eb",)
self.secondary_700 = ("#1d4ed8",)
self.secondary_800 = ("#1e40af",)
self.secondary_900 = ("#1e3a8a",)
self.secondary_950 = ("#1d3660",)
super().set(
# Blaise
background_fill_primary="#110F0F",
background_fill_primary_dark="#110F0F",
background_fill_secondary="#110F0F",
background_fill_secondary_dark="#110F0F",
block_background_fill="*neutral_800",
block_background_fill_dark="*neutral_800",
block_border_color="*border_color_primary",
block_border_color_dark="*border_color_primary",
block_border_width="1px",
block_border_width_dark="1px",
block_info_text_color="*body_text_color_subdued",
block_info_text_color_dark="*body_text_color_subdued",
block_info_text_size="*text_sm",
block_info_text_weight="400",
block_label_background_fill="*background_fill_primary",
block_label_background_fill_dark="*background_fill_secondary",
block_label_border_color="*border_color_primary",
block_label_border_color_dark="*border_color_primary",
block_label_border_width="1px",
block_label_border_width_dark="1px",
block_label_margin="0",
block_label_padding="*spacing_sm *spacing_lg",
block_label_radius="calc(*radius_lg - 1px) 0 calc(*radius_lg - 1px) 0",
block_label_right_radius="0 calc(*radius_lg - 1px) 0 calc(*radius_lg - 1px)",
block_label_shadow="*block_shadow",
block_label_text_color="*#110F0F",
block_label_text_color_dark="*#110F0F",
block_label_text_weight="400",
block_padding="*spacing_xl",
block_radius="*radius_md",
block_shadow="none",
block_shadow_dark="none",
block_title_background_fill="rgb(255,255,255)",
block_title_background_fill_dark="rgb(255,255,255)",
block_title_border_color="none",
block_title_border_color_dark="none",
block_title_border_width="0px",
block_title_padding="*block_label_padding",
block_title_radius="*block_label_radius",
block_title_text_color="#110F0F",
block_title_text_color_dark="#110F0F",
block_title_text_size="*text_md",
block_title_text_weight="600",
body_background_fill="#110F0F",
body_background_fill_dark="#110F0F",
body_text_color="white",
body_text_color_dark="white",
body_text_color_subdued="*neutral_400",
body_text_color_subdued_dark="*neutral_400",
body_text_size="*text_md",
body_text_weight="400",
border_color_accent="*neutral_600",
border_color_accent_dark="*neutral_600",
border_color_primary="*neutral_800",
border_color_primary_dark="*neutral_800",
button_border_width="*input_border_width",
button_border_width_dark="*input_border_width",
button_cancel_background_fill="*button_secondary_background_fill",
button_cancel_background_fill_dark="*button_secondary_background_fill",
button_cancel_background_fill_hover="*button_cancel_background_fill",
button_cancel_background_fill_hover_dark="*button_cancel_background_fill",
button_cancel_border_color="*button_secondary_border_color",
button_cancel_border_color_dark="*button_secondary_border_color",
button_cancel_border_color_hover="*button_cancel_border_color",
button_cancel_border_color_hover_dark="*button_cancel_border_color",
button_cancel_text_color="#110F0F",
button_cancel_text_color_dark="#110F0F",
button_cancel_text_color_hover="#110F0F",
button_cancel_text_color_hover_dark="#110F0F",
button_large_padding="*spacing_lg calc(2 * *spacing_lg)",
button_large_radius="*radius_lg",
button_large_text_size="*text_lg",
button_large_text_weight="600",
button_primary_background_fill="*primary_600",
button_primary_background_fill_dark="*primary_600",
button_primary_background_fill_hover="*primary_500",
button_primary_background_fill_hover_dark="*primary_500",
button_primary_border_color="*primary_500",
button_primary_border_color_dark="*primary_500",
button_primary_border_color_hover="*primary_400",
button_primary_border_color_hover_dark="*primary_400",
button_primary_text_color="white",
button_primary_text_color_dark="white",
button_primary_text_color_hover="#110F0F",
button_primary_text_color_hover_dark="#110F0F",
button_secondary_background_fill="transparent",
button_secondary_background_fill_dark="transparent",
button_secondary_background_fill_hover="*neutral_800",
button_secondary_background_fill_hover_dark="*neutral_800",
button_secondary_border_color="*neutral_700",
button_secondary_border_color_dark="*neutral_700",
button_secondary_border_color_hover="*neutral_600",
button_secondary_border_color_hover_dark="*neutral_600",
button_secondary_text_color="white",
button_secondary_text_color_dark="white",
button_secondary_text_color_hover="*button_secondary_text_color",
button_secondary_text_color_hover_dark="*button_secondary_text_color",
button_shadow="none",
button_shadow_active="*shadow_inset",
button_shadow_hover="none",
button_small_padding="*spacing_sm calc(2 * *spacing_sm)",
button_small_radius="*radius_lg",
button_small_text_size="*text_md",
button_small_text_weight="400",
button_transition="0.3s ease all",
checkbox_background_color="*neutral_700",
checkbox_background_color_dark="*neutral_700",
checkbox_background_color_focus="*checkbox_background_color",
checkbox_background_color_focus_dark="*checkbox_background_color",
checkbox_background_color_hover="*checkbox_background_color",
checkbox_background_color_hover_dark="*checkbox_background_color",
checkbox_background_color_selected="*secondary_600",
checkbox_background_color_selected_dark="*secondary_600",
checkbox_border_color="*neutral_700",
checkbox_border_color_dark="*neutral_700",
checkbox_border_color_focus="*secondary_500",
checkbox_border_color_focus_dark="*secondary_500",
checkbox_border_color_hover="*neutral_600",
checkbox_border_color_hover_dark="*neutral_600",
checkbox_border_color_selected="*secondary_600",
checkbox_border_color_selected_dark="*secondary_600",
checkbox_border_radius="*radius_sm",
checkbox_border_width="*input_border_width",
checkbox_border_width_dark="*input_border_width",
checkbox_check="url(\"data:image/svg+xml,%3csvg viewBox='0 0 16 16' fill='white' xmlns='http://www.w3.org/2000/svg'%3e%3cpath d='M12.207 4.793a1 1 0 010 1.414l-5 5a1 1 0 01-1.414 0l-2-2a1 1 0 011.414-1.414L6.5 9.086l4.293-4.293a1 1 0 011.414 0z'/%3e%3c/svg%3e\")",
checkbox_label_background_fill="transparent",
checkbox_label_background_fill_dark="transparent",
checkbox_label_background_fill_hover="transparent",
checkbox_label_background_fill_hover_dark="transparent",
checkbox_label_background_fill_selected="transparent",
checkbox_label_background_fill_selected_dark="transparent",
checkbox_label_border_color="transparent",
checkbox_label_border_color_dark="transparent",
checkbox_label_border_color_hover="transparent",
checkbox_label_border_color_hover_dark="transparent",
checkbox_label_border_width="transparent",
checkbox_label_border_width_dark="transparent",
checkbox_label_gap="*spacing_lg",
checkbox_label_padding="*spacing_md calc(2 * *spacing_md)",
checkbox_label_shadow="none",
checkbox_label_text_color="*body_text_color",
checkbox_label_text_color_dark="*body_text_color",
checkbox_label_text_color_selected="*checkbox_label_text_color",
checkbox_label_text_color_selected_dark="*checkbox_label_text_color",
checkbox_label_text_size="*text_md",
checkbox_label_text_weight="400",
checkbox_shadow="*input_shadow",
color_accent="*primary_500",
color_accent_soft="*primary_50",
color_accent_soft_dark="*neutral_700",
container_radius="*radius_xl",
embed_radius="*radius_lg",
error_background_fill="*background_fill_primary",
error_background_fill_dark="*background_fill_primary",
error_border_color="*border_color_primary",
error_border_color_dark="*border_color_primary",
error_border_width="1px",
error_border_width_dark="1px",
error_text_color="#ef4444",
error_text_color_dark="#ef4444",
form_gap_width="0px",
input_background_fill="*neutral_900",
input_background_fill_dark="*neutral_900",
input_background_fill_focus="*secondary_600",
input_background_fill_focus_dark="*secondary_600",
input_background_fill_hover="*input_background_fill",
input_background_fill_hover_dark="*input_background_fill",
input_border_color="*neutral_700",
input_border_color_dark="*neutral_700",
input_border_color_focus="*secondary_600",
input_border_color_focus_dark="*primary_600",
input_border_color_hover="*input_border_color",
input_border_color_hover_dark="*input_border_color",
input_border_width="1px",
input_border_width_dark="1px",
input_padding="*spacing_xl",
input_placeholder_color="*neutral_500",
input_placeholder_color_dark="*neutral_500",
input_radius="*radius_lg",
input_shadow="none",
input_shadow_dark="none",
input_shadow_focus="*input_shadow",
input_shadow_focus_dark="*input_shadow",
input_text_size="*text_md",
input_text_weight="400",
layout_gap="*spacing_xxl",
link_text_color="*secondary_500",
link_text_color_active="*secondary_500",
link_text_color_active_dark="*secondary_500",
link_text_color_dark="*secondary_500",
link_text_color_hover="*secondary_400",
link_text_color_hover_dark="*secondary_400",
link_text_color_visited="*secondary_600",
link_text_color_visited_dark="*secondary_600",
loader_color="*color_accent",
loader_color_dark="*color_accent",
panel_background_fill="*background_fill_secondary",
panel_background_fill_dark="*background_fill_secondary",
panel_border_color="*border_color_primary",
panel_border_color_dark="*border_color_primary",
panel_border_width="1px",
panel_border_width_dark="1px",
prose_header_text_weight="600",
prose_text_size="*text_md",
prose_text_weight="400",
radio_circle="url(\"data:image/svg+xml,%3csvg viewBox='0 0 16 16' fill='white' xmlns='http://www.w3.org/2000/svg'%3e%3ccircle cx='8' cy='8' r='3'/%3e%3c/svg%3e\")",
section_header_text_size="*text_md",
section_header_text_weight="400",
shadow_drop="rgba(0,0,0,0.05) 0px 1px 2px 0px",
shadow_drop_lg="0 1px 3px 0 rgb(0 0 0 / 0.1), 0 1px 2px -1px rgb(0 0 0 / 0.1)",
shadow_inset="rgba(0,0,0,0.05) 0px 2px 4px 0px inset",
shadow_spread="3px",
shadow_spread_dark="1px",
slider_color="#9E9E9E",
slider_color_dark="#9E9E9E",
stat_background_fill="*primary_500",
stat_background_fill_dark="*primary_500",
table_border_color="*neutral_700",
table_border_color_dark="*neutral_700",
table_even_background_fill="*neutral_950",
table_even_background_fill_dark="*neutral_950",
table_odd_background_fill="*neutral_900",
table_odd_background_fill_dark="*neutral_900",
table_radius="*radius_lg",
table_row_focus="*color_accent_soft",
table_row_focus_dark="*color_accent_soft",
)
theme = Applio()
with gr.Blocks(title="RVC V2",theme=theme) as app:
with gr.Row():
gr.HTML("<img src='https://huggingface.co/spaces/Blane187/RVC_HF_V2/resolve/main/a.png' alt='image'>")
#toggle_dark = gr.Button(value="Toggle Dark")
with gr.Tabs():
with gr.TabItem("Inference"):
with gr.Row():
voice_model = gr.Dropdown(label="Model Voice", choices=sorted(names), value=lambda:sorted(names)[0] if len(sorted(names)) > 0 else '', interactive=True)
refresh_button = gr.Button("Refresh", variant="primary")
spk_item = gr.Slider(
minimum=0,
maximum=2333,
step=1,
label="Speaker ID",
value=0,
visible=False,
interactive=True,
)
vc_transform0 = gr.Number(label="Pitch",value=0)
but0 = gr.Button(value="Convert", variant="primary")
with gr.Row():
with gr.Column():
with gr.Row():
dropbox = gr.Audio(label="your audio here.")
with gr.Column():
with gr.Accordion("Change Index", open=False):
file_index2 = gr.Dropdown(
label="Change Index",
choices=sorted(index_paths),
interactive=True,
value=sorted(index_paths)[0] if len(sorted(index_paths)) > 0 else ''
)
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label="Index Strength",
value=0.5,
interactive=True,
)
vc_output2 = gr.Audio(label="Output")
with gr.Accordion("General Settings", open=False):
f0method0 = gr.Radio(
label="Method",
choices=["pm", "harvest", "crepe", "rmvpe", "torchfcpe"]
if config.dml == False
else ["pm", "harvest", "rmvpe"],
value="rmvpe",
interactive=True,
)
filter_radius0 = gr.Slider(
minimum=0,
maximum=7,
label="Breathiness Reduction (Harvest only)",
value=3,
step=1,
interactive=True,
)
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
label="Resample",
value=0,
step=1,
interactive=True,
visible=False
)
rms_mix_rate0 = gr.Slider(
minimum=0,
maximum=1,
label="Volume Normalization",
value=0,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label="Breathiness Protection (0 is enabled, 0.5 is disabled)",
value=0.33,
step=0.01,
interactive=True,
)
if voice_model != None: vc.get_vc(voice_model.value,protect0,protect0)
file_index1 = gr.Textbox(
label="Index Path",
interactive=True,
visible=False#Not used here
)
refresh_button.click(
fn=change_choices,
inputs=[],
outputs=[voice_model, file_index2],
api_name="infer_refresh",
)
with gr.Row():
f0_file = gr.File(label="F0 Path", visible=False)
with gr.Row():
vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!",visible=False)
but0.click(
vc.vc_single,
[
spk_item,
dropbox,
vc_transform0,
f0_file,
f0method0,
file_index1,
file_index2,
index_rate1,
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0,
],
[vc_output1, vc_output2],
api_name="infer_convert",
)
voice_model.change(
fn=vc.get_vc,
inputs=[voice_model, protect0, protect0],
outputs=[spk_item, protect0, protect0, file_index2, file_index2],
api_name="infer_change_voice",
)
with gr.TabItem("Download Models"):
with gr.Row():
url_input = gr.Textbox(label="URL to model", value="",placeholder="https://...", scale=6)
name_output = gr.Textbox(label="Save as", value="",placeholder="MyModel",scale=2)
url_download = gr.Button(value="Download Model",scale=2)
url_download.click(
inputs=[url_input,name_output],
outputs=[url_input],
fn=download_from_url,
)
with gr.Row():
model_browser = gr.Dropdown(choices=list(model_library.models.keys()),label="OR Search Models (Quality UNKNOWN)",scale=5)
download_from_browser = gr.Button(value="Get",scale=2)
download_from_browser.click(
inputs=[model_browser],
outputs=[model_browser],
fn=lambda model: download_from_url(model_library.models[model],model),
)
#if warning:
with gr.TabItem("read this"):
gr.Markdown(f"This Spaces Using CPU dude\n may inference take long time\n and Train tab is disable :)")
with gr.TabItem("Train", visible=False):
with gr.Row():
with gr.Column():
training_name = gr.Textbox(label="Name your model", value="My-Voice",placeholder="My-Voice")
np7 = gr.Slider(
minimum=0,
maximum=config.n_cpu,
step=1,
label="Number of CPU processes used to extract pitch features",
value=int(np.ceil(config.n_cpu / 1.5)),
interactive=True,
)
sr2 = gr.Radio(
label="Sampling Rate",
choices=["40k", "32k"],
value="32k",
interactive=True,
visible=False
)
if_f0_3 = gr.Radio(
label="Will your model be used for singing? If not, you can ignore this.",
choices=[True, False],
value=True,
interactive=True,
visible=False
)
version19 = gr.Radio(
label="Version",
choices=["v1", "v2"],
value="v2",
interactive=True,
visible=False,
)
dataset_folder = gr.Textbox(
label="dataset folder", value='dataset'
)
easy_uploader = gr.Files(label="Drop your audio files here",file_types=['audio'])
but1 = gr.Button("1. Process", variant="primary")
info1 = gr.Textbox(label="Information", value="",visible=True)
easy_uploader.upload(inputs=[dataset_folder],outputs=[],fn=lambda folder:os.makedirs(folder,exist_ok=True))
easy_uploader.upload(
fn=lambda files,folder: [shutil.copy2(f.name,os.path.join(folder,os.path.split(f.name)[1])) for f in files] if folder != "" else gr.Warning('Please enter a folder name for your dataset'),
inputs=[easy_uploader, dataset_folder],
outputs=[])
gpus6 = gr.Textbox(
label="Enter the GPU numbers to use separated by -, (e.g. 0-1-2)",
value=gpus,
interactive=True,
visible=F0GPUVisible,
)
gpu_info9 = gr.Textbox(
label="GPU Info", value=gpu_info, visible=F0GPUVisible
)
spk_id5 = gr.Slider(
minimum=0,
maximum=4,
step=1,
label="Speaker ID",
value=0,
interactive=True,
visible=False
)
but1.click(
preprocess_dataset,
[dataset_folder, training_name, sr2, np7],
[info1],
api_name="train_preprocess",
)
with gr.Column():
f0method8 = gr.Radio(
label="F0 extraction method",
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
value="rmvpe_gpu",
interactive=True,
)
gpus_rmvpe = gr.Textbox(
label="GPU numbers to use separated by -, (e.g. 0-1-2)",
value="%s-%s" % (gpus, gpus),
interactive=True,
visible=F0GPUVisible,
)
but2 = gr.Button("2. Extract Features", variant="primary")
info2 = gr.Textbox(label="Information", value="", max_lines=8)
f0method8.change(
fn=change_f0_method,
inputs=[f0method8],
outputs=[gpus_rmvpe],
)
but2.click(
extract_f0_feature,
[
gpus6,
np7,
f0method8,
if_f0_3,
training_name,
version19,
gpus_rmvpe,
],
[info2],
api_name="train_extract_f0_feature",
)
with gr.Column():
total_epoch11 = gr.Slider(
minimum=2,
maximum=1000,
step=1,
label="Epochs (more epochs may improve quality but takes longer)",
value=150,
interactive=True,
)
but4 = gr.Button("3. Train Index", variant="primary")
but3 = gr.Button("4. Train Model", variant="primary")
info3 = gr.Textbox(label="Information", value="", max_lines=10)
with gr.Accordion(label="General Settings", open=False):
gpus16 = gr.Textbox(
label="GPUs separated by -, (e.g. 0-1-2)",
value="0",
interactive=True,
visible=True
)
save_epoch10 = gr.Slider(
minimum=1,
maximum=50,
step=1,
label="Weight Saving Frequency",
value=25,
interactive=True,
)
batch_size12 = gr.Slider(
minimum=1,
maximum=40,
step=1,
label="Batch Size",
value=default_batch_size,
interactive=True,
)
if_save_latest13 = gr.Radio(
label="Only save the latest model",
choices=["yes", "no"],
value="yes",
interactive=True,
visible=False
)
if_cache_gpu17 = gr.Radio(
label="If your dataset is UNDER 10 minutes, cache it to train faster",
choices=["yes", "no"],
value="no",
interactive=True,
)
if_save_every_weights18 = gr.Radio(
label="Save small model at every save point",
choices=["yes", "no"],
value="yes",
interactive=True,
)
with gr.Accordion(label="Change pretrains", open=False):
pretrained = lambda sr, letter: [os.path.abspath(os.path.join('assets/pretrained_v2', file)) for file in os.listdir('assets/pretrained_v2') if file.endswith('.pth') and sr in file and letter in file]
pretrained_G14 = gr.Dropdown(
label="pretrained G",
# Get a list of all pretrained G model files in assets/pretrained_v2 that end with .pth
choices = pretrained(sr2.value, 'G'),
value=pretrained(sr2.value, 'G')[0] if len(pretrained(sr2.value, 'G')) > 0 else '',
interactive=True,
visible=True
)
pretrained_D15 = gr.Dropdown(
label="pretrained D",
choices = pretrained(sr2.value, 'D'),
value= pretrained(sr2.value, 'D')[0] if len(pretrained(sr2.value, 'G')) > 0 else '',
visible=True,
interactive=True
)
with gr.Row():
download_model = gr.Button('5.Download Model')
with gr.Row():
model_files = gr.Files(label='Your Model and Index file can be downloaded here:')
download_model.click(
fn=lambda name: os.listdir(f'assets/weights/{name}') + glob.glob(f'logs/{name.split(".")[0]}/added_*.index'),
inputs=[training_name],
outputs=[model_files, info3])
with gr.Row():
sr2.change(
change_sr2,
[sr2, if_f0_3, version19],
[pretrained_G14, pretrained_D15],
)
version19.change(
change_version19,
[sr2, if_f0_3, version19],
[pretrained_G14, pretrained_D15, sr2],
)
if_f0_3.change(
change_f0,
[if_f0_3, sr2, version19],
[f0method8, pretrained_G14, pretrained_D15],
)
with gr.Row():
but5 = gr.Button("1 Click Training", variant="primary", visible=False)
but3.click(
click_train,
[
training_name,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
],
info3,
api_name="train_start",
)
but4.click(train_index, [training_name, version19], info3)
but5.click(
train1key,
[
training_name,
sr2,
if_f0_3,
dataset_folder,
spk_id5,
np7,
f0method8,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
gpus_rmvpe,
],
info3,
api_name="train_start_all",
)
app.launch(share=True)