Spaces:
Runtime error
Runtime error
mrfakename
commited on
Sync from GitHub repo
Browse filesThis Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there
- app.py +1 -2
- inference-cli.py +2 -3
- model/backbones/dit.py +1 -3
- model/backbones/mmdit.py +1 -3
- model/backbones/unett.py +3 -5
- model/cfm.py +5 -8
- model/dataset.py +3 -5
- model/modules.py +7 -8
- model/trainer.py +1 -3
- model/utils.py +10 -12
- requirements.txt +0 -2
- scripts/eval_infer_batch.py +1 -2
- speech_edit.py +1 -2
- train.py +2 -2
app.py
CHANGED
@@ -4,7 +4,6 @@ import torchaudio
|
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import tempfile
|
7 |
-
from einops import rearrange
|
8 |
from vocos import Vocos
|
9 |
from pydub import AudioSegment, silence
|
10 |
from model import CFM, UNetT, DiT, MMDiT
|
@@ -175,7 +174,7 @@ def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence,
|
|
175 |
|
176 |
generated = generated.to(torch.float32)
|
177 |
generated = generated[:, ref_audio_len:, :]
|
178 |
-
generated_mel_spec =
|
179 |
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
180 |
if rms < target_rms:
|
181 |
generated_wave = generated_wave * rms / target_rms
|
|
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import tempfile
|
|
|
7 |
from vocos import Vocos
|
8 |
from pydub import AudioSegment, silence
|
9 |
from model import CFM, UNetT, DiT, MMDiT
|
|
|
174 |
|
175 |
generated = generated.to(torch.float32)
|
176 |
generated = generated[:, ref_audio_len:, :]
|
177 |
+
generated_mel_spec = generated.permute(0, 2, 1)
|
178 |
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
179 |
if rms < target_rms:
|
180 |
generated_wave = generated_wave * rms / target_rms
|
inference-cli.py
CHANGED
@@ -11,7 +11,6 @@ import torch
|
|
11 |
import torchaudio
|
12 |
import tqdm
|
13 |
from cached_path import cached_path
|
14 |
-
from einops import rearrange
|
15 |
from pydub import AudioSegment, silence
|
16 |
from transformers import pipeline
|
17 |
from vocos import Vocos
|
@@ -274,7 +273,7 @@ def infer_batch(ref_audio, ref_text, gen_text_batches, model, remove_silence, cr
|
|
274 |
|
275 |
generated = generated.to(torch.float32)
|
276 |
generated = generated[:, ref_audio_len:, :]
|
277 |
-
generated_mel_spec =
|
278 |
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
279 |
if rms < target_rms:
|
280 |
generated_wave = generated_wave * rms / target_rms
|
@@ -427,4 +426,4 @@ def process(ref_audio, ref_text, text_gen, model, remove_silence):
|
|
427 |
print(f.name)
|
428 |
|
429 |
|
430 |
-
process(ref_audio, ref_text, gen_text, model, remove_silence)
|
|
|
11 |
import torchaudio
|
12 |
import tqdm
|
13 |
from cached_path import cached_path
|
|
|
14 |
from pydub import AudioSegment, silence
|
15 |
from transformers import pipeline
|
16 |
from vocos import Vocos
|
|
|
273 |
|
274 |
generated = generated.to(torch.float32)
|
275 |
generated = generated[:, ref_audio_len:, :]
|
276 |
+
generated_mel_spec = generated.permute(0, 2, 1)
|
277 |
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
278 |
if rms < target_rms:
|
279 |
generated_wave = generated_wave * rms / target_rms
|
|
|
426 |
print(f.name)
|
427 |
|
428 |
|
429 |
+
process(ref_audio, ref_text, gen_text, model, remove_silence)
|
model/backbones/dit.py
CHANGED
@@ -13,8 +13,6 @@ import torch
|
|
13 |
from torch import nn
|
14 |
import torch.nn.functional as F
|
15 |
|
16 |
-
from einops import repeat
|
17 |
-
|
18 |
from x_transformers.x_transformers import RotaryEmbedding
|
19 |
|
20 |
from model.modules import (
|
@@ -134,7 +132,7 @@ class DiT(nn.Module):
|
|
134 |
):
|
135 |
batch, seq_len = x.shape[0], x.shape[1]
|
136 |
if time.ndim == 0:
|
137 |
-
time = repeat(
|
138 |
|
139 |
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
140 |
t = self.time_embed(time)
|
|
|
13 |
from torch import nn
|
14 |
import torch.nn.functional as F
|
15 |
|
|
|
|
|
16 |
from x_transformers.x_transformers import RotaryEmbedding
|
17 |
|
18 |
from model.modules import (
|
|
|
132 |
):
|
133 |
batch, seq_len = x.shape[0], x.shape[1]
|
134 |
if time.ndim == 0:
|
135 |
+
time = time.repeat(batch)
|
136 |
|
137 |
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
138 |
t = self.time_embed(time)
|
model/backbones/mmdit.py
CHANGED
@@ -12,8 +12,6 @@ from __future__ import annotations
|
|
12 |
import torch
|
13 |
from torch import nn
|
14 |
|
15 |
-
from einops import repeat
|
16 |
-
|
17 |
from x_transformers.x_transformers import RotaryEmbedding
|
18 |
|
19 |
from model.modules import (
|
@@ -115,7 +113,7 @@ class MMDiT(nn.Module):
|
|
115 |
):
|
116 |
batch = x.shape[0]
|
117 |
if time.ndim == 0:
|
118 |
-
time = repeat(
|
119 |
|
120 |
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
|
121 |
t = self.time_embed(time)
|
|
|
12 |
import torch
|
13 |
from torch import nn
|
14 |
|
|
|
|
|
15 |
from x_transformers.x_transformers import RotaryEmbedding
|
16 |
|
17 |
from model.modules import (
|
|
|
113 |
):
|
114 |
batch = x.shape[0]
|
115 |
if time.ndim == 0:
|
116 |
+
time = time.repeat(batch)
|
117 |
|
118 |
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
|
119 |
t = self.time_embed(time)
|
model/backbones/unett.py
CHANGED
@@ -14,8 +14,6 @@ import torch
|
|
14 |
from torch import nn
|
15 |
import torch.nn.functional as F
|
16 |
|
17 |
-
from einops import repeat, pack, unpack
|
18 |
-
|
19 |
from x_transformers import RMSNorm
|
20 |
from x_transformers.x_transformers import RotaryEmbedding
|
21 |
|
@@ -155,7 +153,7 @@ class UNetT(nn.Module):
|
|
155 |
):
|
156 |
batch, seq_len = x.shape[0], x.shape[1]
|
157 |
if time.ndim == 0:
|
158 |
-
time = repeat(
|
159 |
|
160 |
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
161 |
t = self.time_embed(time)
|
@@ -163,7 +161,7 @@ class UNetT(nn.Module):
|
|
163 |
x = self.input_embed(x, cond, text_embed, drop_audio_cond = drop_audio_cond)
|
164 |
|
165 |
# postfix time t to input x, [b n d] -> [b n+1 d]
|
166 |
-
x
|
167 |
if mask is not None:
|
168 |
mask = F.pad(mask, (1, 0), value=1)
|
169 |
|
@@ -196,6 +194,6 @@ class UNetT(nn.Module):
|
|
196 |
|
197 |
assert len(skips) == 0
|
198 |
|
199 |
-
|
200 |
|
201 |
return self.proj_out(x)
|
|
|
14 |
from torch import nn
|
15 |
import torch.nn.functional as F
|
16 |
|
|
|
|
|
17 |
from x_transformers import RMSNorm
|
18 |
from x_transformers.x_transformers import RotaryEmbedding
|
19 |
|
|
|
153 |
):
|
154 |
batch, seq_len = x.shape[0], x.shape[1]
|
155 |
if time.ndim == 0:
|
156 |
+
time = time.repeat(batch)
|
157 |
|
158 |
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
159 |
t = self.time_embed(time)
|
|
|
161 |
x = self.input_embed(x, cond, text_embed, drop_audio_cond = drop_audio_cond)
|
162 |
|
163 |
# postfix time t to input x, [b n d] -> [b n+1 d]
|
164 |
+
x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x
|
165 |
if mask is not None:
|
166 |
mask = F.pad(mask, (1, 0), value=1)
|
167 |
|
|
|
194 |
|
195 |
assert len(skips) == 0
|
196 |
|
197 |
+
x = self.norm_out(x)[:, 1:, :] # unpack t from x
|
198 |
|
199 |
return self.proj_out(x)
|
model/cfm.py
CHANGED
@@ -18,10 +18,7 @@ from torch.nn.utils.rnn import pad_sequence
|
|
18 |
|
19 |
from torchdiffeq import odeint
|
20 |
|
21 |
-
from einops import rearrange
|
22 |
-
|
23 |
from model.modules import MelSpec
|
24 |
-
|
25 |
from model.utils import (
|
26 |
default, exists,
|
27 |
list_str_to_idx, list_str_to_tensor,
|
@@ -105,7 +102,7 @@ class CFM(nn.Module):
|
|
105 |
|
106 |
if cond.ndim == 2:
|
107 |
cond = self.mel_spec(cond)
|
108 |
-
cond =
|
109 |
assert cond.shape[-1] == self.num_channels
|
110 |
|
111 |
batch, cond_seq_len, device = *cond.shape[:2], cond.device
|
@@ -144,7 +141,7 @@ class CFM(nn.Module):
|
|
144 |
|
145 |
cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value = 0.)
|
146 |
cond_mask = F.pad(cond_mask, (0, max_duration - cond_mask.shape[-1]), value = False)
|
147 |
-
cond_mask =
|
148 |
step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond)) # allow direct control (cut cond audio) with lens passed in
|
149 |
|
150 |
if batch > 1:
|
@@ -199,7 +196,7 @@ class CFM(nn.Module):
|
|
199 |
out = torch.where(cond_mask, cond, out)
|
200 |
|
201 |
if exists(vocoder):
|
202 |
-
out =
|
203 |
out = vocoder(out)
|
204 |
|
205 |
return out, trajectory
|
@@ -215,7 +212,7 @@ class CFM(nn.Module):
|
|
215 |
# handle raw wave
|
216 |
if inp.ndim == 2:
|
217 |
inp = self.mel_spec(inp)
|
218 |
-
inp =
|
219 |
assert inp.shape[-1] == self.num_channels
|
220 |
|
221 |
batch, seq_len, dtype, device, σ1 = *inp.shape[:2], inp.dtype, self.device, self.sigma
|
@@ -252,7 +249,7 @@ class CFM(nn.Module):
|
|
252 |
# TODO. noise_scheduler
|
253 |
|
254 |
# sample xt (φ_t(x) in the paper)
|
255 |
-
t =
|
256 |
φ = (1 - t) * x0 + t * x1
|
257 |
flow = x1 - x0
|
258 |
|
|
|
18 |
|
19 |
from torchdiffeq import odeint
|
20 |
|
|
|
|
|
21 |
from model.modules import MelSpec
|
|
|
22 |
from model.utils import (
|
23 |
default, exists,
|
24 |
list_str_to_idx, list_str_to_tensor,
|
|
|
102 |
|
103 |
if cond.ndim == 2:
|
104 |
cond = self.mel_spec(cond)
|
105 |
+
cond = cond.permute(0, 2, 1)
|
106 |
assert cond.shape[-1] == self.num_channels
|
107 |
|
108 |
batch, cond_seq_len, device = *cond.shape[:2], cond.device
|
|
|
141 |
|
142 |
cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value = 0.)
|
143 |
cond_mask = F.pad(cond_mask, (0, max_duration - cond_mask.shape[-1]), value = False)
|
144 |
+
cond_mask = cond_mask.unsqueeze(-1)
|
145 |
step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond)) # allow direct control (cut cond audio) with lens passed in
|
146 |
|
147 |
if batch > 1:
|
|
|
196 |
out = torch.where(cond_mask, cond, out)
|
197 |
|
198 |
if exists(vocoder):
|
199 |
+
out = out.permute(0, 2, 1)
|
200 |
out = vocoder(out)
|
201 |
|
202 |
return out, trajectory
|
|
|
212 |
# handle raw wave
|
213 |
if inp.ndim == 2:
|
214 |
inp = self.mel_spec(inp)
|
215 |
+
inp = inp.permute(0, 2, 1)
|
216 |
assert inp.shape[-1] == self.num_channels
|
217 |
|
218 |
batch, seq_len, dtype, device, σ1 = *inp.shape[:2], inp.dtype, self.device, self.sigma
|
|
|
249 |
# TODO. noise_scheduler
|
250 |
|
251 |
# sample xt (φ_t(x) in the paper)
|
252 |
+
t = time.unsqueeze(-1).unsqueeze(-1)
|
253 |
φ = (1 - t) * x0 + t * x1
|
254 |
flow = x1 - x0
|
255 |
|
model/dataset.py
CHANGED
@@ -9,8 +9,6 @@ import torchaudio
|
|
9 |
from datasets import load_dataset, load_from_disk
|
10 |
from datasets import Dataset as Dataset_
|
11 |
|
12 |
-
from einops import rearrange
|
13 |
-
|
14 |
from model.modules import MelSpec
|
15 |
|
16 |
|
@@ -54,11 +52,11 @@ class HFDataset(Dataset):
|
|
54 |
resampler = torchaudio.transforms.Resample(sample_rate, self.target_sample_rate)
|
55 |
audio_tensor = resampler(audio_tensor)
|
56 |
|
57 |
-
audio_tensor =
|
58 |
|
59 |
mel_spec = self.mel_spectrogram(audio_tensor)
|
60 |
|
61 |
-
mel_spec =
|
62 |
|
63 |
text = row['text']
|
64 |
|
@@ -114,7 +112,7 @@ class CustomDataset(Dataset):
|
|
114 |
audio = resampler(audio)
|
115 |
|
116 |
mel_spec = self.mel_spectrogram(audio)
|
117 |
-
mel_spec =
|
118 |
|
119 |
return dict(
|
120 |
mel_spec = mel_spec,
|
|
|
9 |
from datasets import load_dataset, load_from_disk
|
10 |
from datasets import Dataset as Dataset_
|
11 |
|
|
|
|
|
12 |
from model.modules import MelSpec
|
13 |
|
14 |
|
|
|
52 |
resampler = torchaudio.transforms.Resample(sample_rate, self.target_sample_rate)
|
53 |
audio_tensor = resampler(audio_tensor)
|
54 |
|
55 |
+
audio_tensor = audio_tensor.unsqueeze(0) # 't -> 1 t')
|
56 |
|
57 |
mel_spec = self.mel_spectrogram(audio_tensor)
|
58 |
|
59 |
+
mel_spec = mel_spec.squeeze(0) # '1 d t -> d t'
|
60 |
|
61 |
text = row['text']
|
62 |
|
|
|
112 |
audio = resampler(audio)
|
113 |
|
114 |
mel_spec = self.mel_spectrogram(audio)
|
115 |
+
mel_spec = mel_spec.squeeze(0) # '1 d t -> d t')
|
116 |
|
117 |
return dict(
|
118 |
mel_spec = mel_spec,
|
model/modules.py
CHANGED
@@ -16,7 +16,6 @@ from torch import nn
|
|
16 |
import torch.nn.functional as F
|
17 |
import torchaudio
|
18 |
|
19 |
-
from einops import rearrange
|
20 |
from x_transformers.x_transformers import apply_rotary_pos_emb
|
21 |
|
22 |
|
@@ -54,7 +53,7 @@ class MelSpec(nn.Module):
|
|
54 |
|
55 |
def forward(self, inp):
|
56 |
if len(inp.shape) == 3:
|
57 |
-
inp =
|
58 |
|
59 |
assert len(inp.shape) == 2
|
60 |
|
@@ -101,9 +100,9 @@ class ConvPositionEmbedding(nn.Module):
|
|
101 |
mask = mask[..., None]
|
102 |
x = x.masked_fill(~mask, 0.)
|
103 |
|
104 |
-
x =
|
105 |
x = self.conv1d(x)
|
106 |
-
out =
|
107 |
|
108 |
if mask is not None:
|
109 |
out = out.masked_fill(~mask, 0.)
|
@@ -345,7 +344,7 @@ class AttnProcessor:
|
|
345 |
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
346 |
if mask is not None:
|
347 |
attn_mask = mask
|
348 |
-
attn_mask =
|
349 |
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
350 |
else:
|
351 |
attn_mask = None
|
@@ -360,7 +359,7 @@ class AttnProcessor:
|
|
360 |
x = attn.to_out[1](x)
|
361 |
|
362 |
if mask is not None:
|
363 |
-
mask =
|
364 |
x = x.masked_fill(~mask, 0.)
|
365 |
|
366 |
return x
|
@@ -422,7 +421,7 @@ class JointAttnProcessor:
|
|
422 |
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
423 |
if mask is not None:
|
424 |
attn_mask = F.pad(mask, (0, c.shape[1]), value = True) # no mask for c (text)
|
425 |
-
attn_mask =
|
426 |
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
427 |
else:
|
428 |
attn_mask = None
|
@@ -445,7 +444,7 @@ class JointAttnProcessor:
|
|
445 |
c = attn.to_out_c(c)
|
446 |
|
447 |
if mask is not None:
|
448 |
-
mask =
|
449 |
x = x.masked_fill(~mask, 0.)
|
450 |
# c = c.masked_fill(~mask, 0.) # no mask for c (text)
|
451 |
|
|
|
16 |
import torch.nn.functional as F
|
17 |
import torchaudio
|
18 |
|
|
|
19 |
from x_transformers.x_transformers import apply_rotary_pos_emb
|
20 |
|
21 |
|
|
|
53 |
|
54 |
def forward(self, inp):
|
55 |
if len(inp.shape) == 3:
|
56 |
+
inp = inp.squeeze(1) # 'b 1 nw -> b nw'
|
57 |
|
58 |
assert len(inp.shape) == 2
|
59 |
|
|
|
100 |
mask = mask[..., None]
|
101 |
x = x.masked_fill(~mask, 0.)
|
102 |
|
103 |
+
x = x.permute(0, 2, 1)
|
104 |
x = self.conv1d(x)
|
105 |
+
out = x.permute(0, 2, 1)
|
106 |
|
107 |
if mask is not None:
|
108 |
out = out.masked_fill(~mask, 0.)
|
|
|
344 |
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
345 |
if mask is not None:
|
346 |
attn_mask = mask
|
347 |
+
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
348 |
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
349 |
else:
|
350 |
attn_mask = None
|
|
|
359 |
x = attn.to_out[1](x)
|
360 |
|
361 |
if mask is not None:
|
362 |
+
mask = mask.unsqueeze(-1)
|
363 |
x = x.masked_fill(~mask, 0.)
|
364 |
|
365 |
return x
|
|
|
421 |
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
422 |
if mask is not None:
|
423 |
attn_mask = F.pad(mask, (0, c.shape[1]), value = True) # no mask for c (text)
|
424 |
+
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
425 |
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
426 |
else:
|
427 |
attn_mask = None
|
|
|
444 |
c = attn.to_out_c(c)
|
445 |
|
446 |
if mask is not None:
|
447 |
+
mask = mask.unsqueeze(-1)
|
448 |
x = x.masked_fill(~mask, 0.)
|
449 |
# c = c.masked_fill(~mask, 0.) # no mask for c (text)
|
450 |
|
model/trainer.py
CHANGED
@@ -10,8 +10,6 @@ from torch.optim import AdamW
|
|
10 |
from torch.utils.data import DataLoader, Dataset, SequentialSampler
|
11 |
from torch.optim.lr_scheduler import LinearLR, SequentialLR
|
12 |
|
13 |
-
from einops import rearrange
|
14 |
-
|
15 |
from accelerate import Accelerator
|
16 |
from accelerate.utils import DistributedDataParallelKwargs
|
17 |
|
@@ -222,7 +220,7 @@ class Trainer:
|
|
222 |
for batch in progress_bar:
|
223 |
with self.accelerator.accumulate(self.model):
|
224 |
text_inputs = batch['text']
|
225 |
-
mel_spec =
|
226 |
mel_lengths = batch["mel_lengths"]
|
227 |
|
228 |
# TODO. add duration predictor training
|
|
|
10 |
from torch.utils.data import DataLoader, Dataset, SequentialSampler
|
11 |
from torch.optim.lr_scheduler import LinearLR, SequentialLR
|
12 |
|
|
|
|
|
13 |
from accelerate import Accelerator
|
14 |
from accelerate.utils import DistributedDataParallelKwargs
|
15 |
|
|
|
220 |
for batch in progress_bar:
|
221 |
with self.accelerator.accumulate(self.model):
|
222 |
text_inputs = batch['text']
|
223 |
+
mel_spec = batch['mel'].permute(0, 2, 1)
|
224 |
mel_lengths = batch["mel_lengths"]
|
225 |
|
226 |
# TODO. add duration predictor training
|
model/utils.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import os
|
4 |
-
import re
|
5 |
import math
|
6 |
import random
|
7 |
import string
|
@@ -17,9 +16,6 @@ import torch.nn.functional as F
|
|
17 |
from torch.nn.utils.rnn import pad_sequence
|
18 |
import torchaudio
|
19 |
|
20 |
-
import einx
|
21 |
-
from einops import rearrange, reduce
|
22 |
-
|
23 |
import jieba
|
24 |
from pypinyin import lazy_pinyin, Style
|
25 |
|
@@ -57,7 +53,7 @@ def lens_to_mask(
|
|
57 |
length = t.amax()
|
58 |
|
59 |
seq = torch.arange(length, device = t.device)
|
60 |
-
return
|
61 |
|
62 |
def mask_from_start_end_indices(
|
63 |
seq_len: int['b'],
|
@@ -66,7 +62,9 @@ def mask_from_start_end_indices(
|
|
66 |
):
|
67 |
max_seq_len = seq_len.max().item()
|
68 |
seq = torch.arange(max_seq_len, device = start.device).long()
|
69 |
-
|
|
|
|
|
70 |
|
71 |
def mask_from_frac_lengths(
|
72 |
seq_len: int['b'],
|
@@ -89,11 +87,11 @@ def maybe_masked_mean(
|
|
89 |
if not exists(mask):
|
90 |
return t.mean(dim = 1)
|
91 |
|
92 |
-
t =
|
93 |
-
num =
|
94 |
-
den =
|
95 |
|
96 |
-
return
|
97 |
|
98 |
|
99 |
# simple utf-8 tokenizer, since paper went character based
|
@@ -239,7 +237,7 @@ def padded_mel_batch(ref_mels):
|
|
239 |
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value = 0)
|
240 |
padded_ref_mels.append(padded_ref_mel)
|
241 |
padded_ref_mels = torch.stack(padded_ref_mels)
|
242 |
-
padded_ref_mels =
|
243 |
return padded_ref_mels
|
244 |
|
245 |
|
@@ -302,7 +300,7 @@ def get_inference_prompt(
|
|
302 |
|
303 |
# to mel spectrogram
|
304 |
ref_mel = mel_spectrogram(ref_audio)
|
305 |
-
ref_mel =
|
306 |
|
307 |
# deal with batch
|
308 |
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
|
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import os
|
|
|
4 |
import math
|
5 |
import random
|
6 |
import string
|
|
|
16 |
from torch.nn.utils.rnn import pad_sequence
|
17 |
import torchaudio
|
18 |
|
|
|
|
|
|
|
19 |
import jieba
|
20 |
from pypinyin import lazy_pinyin, Style
|
21 |
|
|
|
53 |
length = t.amax()
|
54 |
|
55 |
seq = torch.arange(length, device = t.device)
|
56 |
+
return seq[None, :] < t[:, None]
|
57 |
|
58 |
def mask_from_start_end_indices(
|
59 |
seq_len: int['b'],
|
|
|
62 |
):
|
63 |
max_seq_len = seq_len.max().item()
|
64 |
seq = torch.arange(max_seq_len, device = start.device).long()
|
65 |
+
start_mask = seq[None, :] >= start[:, None]
|
66 |
+
end_mask = seq[None, :] < end[:, None]
|
67 |
+
return start_mask & end_mask
|
68 |
|
69 |
def mask_from_frac_lengths(
|
70 |
seq_len: int['b'],
|
|
|
87 |
if not exists(mask):
|
88 |
return t.mean(dim = 1)
|
89 |
|
90 |
+
t = torch.where(mask[:, :, None], t, torch.tensor(0., device=t.device))
|
91 |
+
num = t.sum(dim=1)
|
92 |
+
den = mask.float().sum(dim=1)
|
93 |
|
94 |
+
return num / den.clamp(min=1.)
|
95 |
|
96 |
|
97 |
# simple utf-8 tokenizer, since paper went character based
|
|
|
237 |
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value = 0)
|
238 |
padded_ref_mels.append(padded_ref_mel)
|
239 |
padded_ref_mels = torch.stack(padded_ref_mels)
|
240 |
+
padded_ref_mels = padded_ref_mels.permute(0, 2, 1)
|
241 |
return padded_ref_mels
|
242 |
|
243 |
|
|
|
300 |
|
301 |
# to mel spectrogram
|
302 |
ref_mel = mel_spectrogram(ref_audio)
|
303 |
+
ref_mel = ref_mel.squeeze(0)
|
304 |
|
305 |
# deal with batch
|
306 |
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
|
requirements.txt
CHANGED
@@ -3,8 +3,6 @@ bitsandbytes>0.37.0
|
|
3 |
cached_path
|
4 |
click
|
5 |
datasets
|
6 |
-
einops>=0.8.0
|
7 |
-
einx>=0.3.0
|
8 |
ema_pytorch>=0.5.2
|
9 |
gradio
|
10 |
jieba
|
|
|
3 |
cached_path
|
4 |
click
|
5 |
datasets
|
|
|
|
|
6 |
ema_pytorch>=0.5.2
|
7 |
gradio
|
8 |
jieba
|
scripts/eval_infer_batch.py
CHANGED
@@ -9,7 +9,6 @@ import argparse
|
|
9 |
import torch
|
10 |
import torchaudio
|
11 |
from accelerate import Accelerator
|
12 |
-
from einops import rearrange
|
13 |
from vocos import Vocos
|
14 |
|
15 |
from model import CFM, UNetT, DiT
|
@@ -187,7 +186,7 @@ with accelerator.split_between_processes(prompts_all) as prompts:
|
|
187 |
# Final result
|
188 |
for i, gen in enumerate(generated):
|
189 |
gen = gen[ref_mel_lens[i]:total_mel_lens[i], :].unsqueeze(0)
|
190 |
-
gen_mel_spec =
|
191 |
generated_wave = vocos.decode(gen_mel_spec.cpu())
|
192 |
if ref_rms_list[i] < target_rms:
|
193 |
generated_wave = generated_wave * ref_rms_list[i] / target_rms
|
|
|
9 |
import torch
|
10 |
import torchaudio
|
11 |
from accelerate import Accelerator
|
|
|
12 |
from vocos import Vocos
|
13 |
|
14 |
from model import CFM, UNetT, DiT
|
|
|
186 |
# Final result
|
187 |
for i, gen in enumerate(generated):
|
188 |
gen = gen[ref_mel_lens[i]:total_mel_lens[i], :].unsqueeze(0)
|
189 |
+
gen_mel_spec = gen.permute(0, 2, 1)
|
190 |
generated_wave = vocos.decode(gen_mel_spec.cpu())
|
191 |
if ref_rms_list[i] < target_rms:
|
192 |
generated_wave = generated_wave * ref_rms_list[i] / target_rms
|
speech_edit.py
CHANGED
@@ -3,7 +3,6 @@ import os
|
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
5 |
import torchaudio
|
6 |
-
from einops import rearrange
|
7 |
from vocos import Vocos
|
8 |
|
9 |
from model import CFM, UNetT, DiT, MMDiT
|
@@ -174,7 +173,7 @@ print(f"Generated mel: {generated.shape}")
|
|
174 |
# Final result
|
175 |
generated = generated.to(torch.float32)
|
176 |
generated = generated[:, ref_audio_len:, :]
|
177 |
-
generated_mel_spec =
|
178 |
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
179 |
if rms < target_rms:
|
180 |
generated_wave = generated_wave * rms / target_rms
|
|
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
5 |
import torchaudio
|
|
|
6 |
from vocos import Vocos
|
7 |
|
8 |
from model import CFM, UNetT, DiT, MMDiT
|
|
|
173 |
# Final result
|
174 |
generated = generated.to(torch.float32)
|
175 |
generated = generated[:, ref_audio_len:, :]
|
176 |
+
generated_mel_spec = generated.permute(0, 2, 1)
|
177 |
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
178 |
if rms < target_rms:
|
179 |
generated_wave = generated_wave * rms / target_rms
|
train.py
CHANGED
@@ -56,7 +56,7 @@ def main():
|
|
56 |
hop_length = hop_length,
|
57 |
)
|
58 |
|
59 |
-
|
60 |
transformer = model_cls(
|
61 |
**model_cfg,
|
62 |
text_num_embeds = vocab_size,
|
@@ -67,7 +67,7 @@ def main():
|
|
67 |
)
|
68 |
|
69 |
trainer = Trainer(
|
70 |
-
|
71 |
epochs,
|
72 |
learning_rate,
|
73 |
num_warmup_updates = num_warmup_updates,
|
|
|
56 |
hop_length = hop_length,
|
57 |
)
|
58 |
|
59 |
+
model = CFM(
|
60 |
transformer = model_cls(
|
61 |
**model_cfg,
|
62 |
text_num_embeds = vocab_size,
|
|
|
67 |
)
|
68 |
|
69 |
trainer = Trainer(
|
70 |
+
model,
|
71 |
epochs,
|
72 |
learning_rate,
|
73 |
num_warmup_updates = num_warmup_updates,
|