E2-F5-TTSgi / scripts /prepare_emilia.py
mrfakename's picture
Sync from GitHub repo
d37849f verified
# Emilia Dataset: https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07
# if use updated new version, i.e. WebDataset, feel free to modify / draft your own script
# generate audio text map for Emilia ZH & EN
# evaluate for vocab size
import sys
import os
sys.path.append(os.getcwd())
from pathlib import Path
import json
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor
from datasets.arrow_writer import ArrowWriter
from model.utils import (
repetition_found,
convert_char_to_pinyin,
)
out_zh = {
"ZH_B00041_S06226",
"ZH_B00042_S09204",
"ZH_B00065_S09430",
"ZH_B00065_S09431",
"ZH_B00066_S09327",
"ZH_B00066_S09328",
}
zh_filters = ["い", "て"]
# seems synthesized audios, or heavily code-switched
out_en = {
"EN_B00013_S00913",
"EN_B00042_S00120",
"EN_B00055_S04111",
"EN_B00061_S00693",
"EN_B00061_S01494",
"EN_B00061_S03375",
"EN_B00059_S00092",
"EN_B00111_S04300",
"EN_B00100_S03759",
"EN_B00087_S03811",
"EN_B00059_S00950",
"EN_B00089_S00946",
"EN_B00078_S05127",
"EN_B00070_S04089",
"EN_B00074_S09659",
"EN_B00061_S06983",
"EN_B00061_S07060",
"EN_B00059_S08397",
"EN_B00082_S06192",
"EN_B00091_S01238",
"EN_B00089_S07349",
"EN_B00070_S04343",
"EN_B00061_S02400",
"EN_B00076_S01262",
"EN_B00068_S06467",
"EN_B00076_S02943",
"EN_B00064_S05954",
"EN_B00061_S05386",
"EN_B00066_S06544",
"EN_B00076_S06944",
"EN_B00072_S08620",
"EN_B00076_S07135",
"EN_B00076_S09127",
"EN_B00065_S00497",
"EN_B00059_S06227",
"EN_B00063_S02859",
"EN_B00075_S01547",
"EN_B00061_S08286",
"EN_B00079_S02901",
"EN_B00092_S03643",
"EN_B00096_S08653",
"EN_B00063_S04297",
"EN_B00063_S04614",
"EN_B00079_S04698",
"EN_B00104_S01666",
"EN_B00061_S09504",
"EN_B00061_S09694",
"EN_B00065_S05444",
"EN_B00063_S06860",
"EN_B00065_S05725",
"EN_B00069_S07628",
"EN_B00083_S03875",
"EN_B00071_S07665",
"EN_B00071_S07665",
"EN_B00062_S04187",
"EN_B00065_S09873",
"EN_B00065_S09922",
"EN_B00084_S02463",
"EN_B00067_S05066",
"EN_B00106_S08060",
"EN_B00073_S06399",
"EN_B00073_S09236",
"EN_B00087_S00432",
"EN_B00085_S05618",
"EN_B00064_S01262",
"EN_B00072_S01739",
"EN_B00059_S03913",
"EN_B00069_S04036",
"EN_B00067_S05623",
"EN_B00060_S05389",
"EN_B00060_S07290",
"EN_B00062_S08995",
}
en_filters = ["ا", "い", "て"]
def deal_with_audio_dir(audio_dir):
audio_jsonl = audio_dir.with_suffix(".jsonl")
sub_result, durations = [], []
vocab_set = set()
bad_case_zh = 0
bad_case_en = 0
with open(audio_jsonl, "r") as f:
lines = f.readlines()
for line in tqdm(lines, desc=f"{audio_jsonl.stem}"):
obj = json.loads(line)
text = obj["text"]
if obj["language"] == "zh":
if obj["wav"].split("/")[1] in out_zh or any(f in text for f in zh_filters) or repetition_found(text):
bad_case_zh += 1
continue
else:
text = text.translate(
str.maketrans({",": ",", "!": "!", "?": "?"})
) # not "。" cuz much code-switched
if obj["language"] == "en":
if (
obj["wav"].split("/")[1] in out_en
or any(f in text for f in en_filters)
or repetition_found(text, length=4)
):
bad_case_en += 1
continue
if tokenizer == "pinyin":
text = convert_char_to_pinyin([text], polyphone=polyphone)[0]
duration = obj["duration"]
sub_result.append({"audio_path": str(audio_dir.parent / obj["wav"]), "text": text, "duration": duration})
durations.append(duration)
vocab_set.update(list(text))
return sub_result, durations, vocab_set, bad_case_zh, bad_case_en
def main():
assert tokenizer in ["pinyin", "char"]
result = []
duration_list = []
text_vocab_set = set()
total_bad_case_zh = 0
total_bad_case_en = 0
# process raw data
executor = ProcessPoolExecutor(max_workers=max_workers)
futures = []
for lang in langs:
dataset_path = Path(os.path.join(dataset_dir, lang))
[
futures.append(executor.submit(deal_with_audio_dir, audio_dir))
for audio_dir in dataset_path.iterdir()
if audio_dir.is_dir()
]
for futures in tqdm(futures, total=len(futures)):
sub_result, durations, vocab_set, bad_case_zh, bad_case_en = futures.result()
result.extend(sub_result)
duration_list.extend(durations)
text_vocab_set.update(vocab_set)
total_bad_case_zh += bad_case_zh
total_bad_case_en += bad_case_en
executor.shutdown()
# save preprocessed dataset to disk
if not os.path.exists(f"data/{dataset_name}"):
os.makedirs(f"data/{dataset_name}")
print(f"\nSaving to data/{dataset_name} ...")
# dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list}) # oom
# dataset.save_to_disk(f"data/{dataset_name}/raw", max_shard_size="2GB")
with ArrowWriter(path=f"data/{dataset_name}/raw.arrow") as writer:
for line in tqdm(result, desc="Writing to raw.arrow ..."):
writer.write(line)
# dup a json separately saving duration in case for DynamicBatchSampler ease
with open(f"data/{dataset_name}/duration.json", "w", encoding="utf-8") as f:
json.dump({"duration": duration_list}, f, ensure_ascii=False)
# vocab map, i.e. tokenizer
# add alphabets and symbols (optional, if plan to ft on de/fr etc.)
# if tokenizer == "pinyin":
# text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)])
with open(f"data/{dataset_name}/vocab.txt", "w") as f:
for vocab in sorted(text_vocab_set):
f.write(vocab + "\n")
print(f"\nFor {dataset_name}, sample count: {len(result)}")
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
if "ZH" in langs:
print(f"Bad zh transcription case: {total_bad_case_zh}")
if "EN" in langs:
print(f"Bad en transcription case: {total_bad_case_en}\n")
if __name__ == "__main__":
max_workers = 32
tokenizer = "pinyin" # "pinyin" | "char"
polyphone = True
langs = ["ZH", "EN"]
dataset_dir = "<SOME_PATH>/Emilia_Dataset/raw"
dataset_name = f"Emilia_{'_'.join(langs)}_{tokenizer}"
print(f"\nPrepare for {dataset_name}\n")
main()
# Emilia ZH & EN
# samples count 37837916 (after removal)
# pinyin vocab size 2543 (polyphone)
# total duration 95281.87 (hours)
# bad zh asr cnt 230435 (samples)
# bad eh asr cnt 37217 (samples)
# vocab size may be slightly different due to jieba tokenizer and pypinyin (e.g. way of polyphoneme)
# please be careful if using pretrained model, make sure the vocab.txt is same