File size: 20,722 Bytes
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eac142
dd217c7
 
 
 
 
 
 
 
9eac142
 
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eac142
 
 
dd217c7
9eac142
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
 
 
 
 
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eac142
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4064aae
 
dd217c7
 
 
 
9eac142
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
dd217c7
 
 
 
 
 
 
 
a674527
dd217c7
 
 
 
 
 
 
 
 
 
 
a674527
dd217c7
 
 
 
 
 
 
a674527
 
dd217c7
 
 
a674527
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea02d8
 
dd217c7
 
 
 
1d03890
dd217c7
1d03890
dd217c7
1d03890
dd217c7
1d03890
 
 
dd217c7
1d03890
 
dd217c7
1d03890
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
from __future__ import annotations

import os
import math
import random
import string
from tqdm import tqdm
from collections import defaultdict

import matplotlib
matplotlib.use("Agg")
import matplotlib.pylab as plt

import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
import torchaudio

import jieba
from pypinyin import lazy_pinyin, Style

from model.ecapa_tdnn import ECAPA_TDNN_SMALL
from model.modules import MelSpec


# seed everything

def seed_everything(seed = 0):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

# helpers

def exists(v):
    return v is not None

def default(v, d):
    return v if exists(v) else d

# tensor helpers

def lens_to_mask(
    t: int['b'],
    length: int | None = None
) -> bool['b n']:

    if not exists(length):
        length = t.amax()

    seq = torch.arange(length, device = t.device)
    return seq[None, :] < t[:, None]

def mask_from_start_end_indices(
    seq_len: int['b'],
    start: int['b'],
    end: int['b']
):
    max_seq_len = seq_len.max().item()  
    seq = torch.arange(max_seq_len, device = start.device).long()
    start_mask = seq[None, :] >= start[:, None]
    end_mask = seq[None, :] < end[:, None]
    return start_mask & end_mask

def mask_from_frac_lengths(
    seq_len: int['b'],
    frac_lengths: float['b']
):
    lengths = (frac_lengths * seq_len).long()
    max_start = seq_len - lengths

    rand = torch.rand_like(frac_lengths)
    start = (max_start * rand).long().clamp(min = 0)
    end = start + lengths

    return mask_from_start_end_indices(seq_len, start, end)

def maybe_masked_mean(
    t: float['b n d'],
    mask: bool['b n'] = None
) -> float['b d']:

    if not exists(mask):
        return t.mean(dim = 1)

    t = torch.where(mask[:, :, None], t, torch.tensor(0., device=t.device))
    num = t.sum(dim=1)
    den = mask.float().sum(dim=1)

    return num / den.clamp(min=1.)


# simple utf-8 tokenizer, since paper went character based
def list_str_to_tensor(
    text: list[str],
    padding_value = -1
) -> int['b nt']:
    list_tensors = [torch.tensor([*bytes(t, 'UTF-8')]) for t in text]  # ByT5 style
    text = pad_sequence(list_tensors, padding_value = padding_value, batch_first = True)
    return text

# char tokenizer, based on custom dataset's extracted .txt file
def list_str_to_idx(
    text: list[str] | list[list[str]],
    vocab_char_map: dict[str, int],  # {char: idx}
    padding_value = -1
) -> int['b nt']:
    list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text]  # pinyin or char style
    text = pad_sequence(list_idx_tensors, padding_value = padding_value, batch_first = True)
    return text


# Get tokenizer

def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
    ''' 
    tokenizer   - "pinyin" do g2p for only chinese characters, need .txt vocab_file
                - "char" for char-wise tokenizer, need .txt vocab_file
                - "byte" for utf-8 tokenizer
                - "custom" if you're directly passing in a path to the vocab.txt you want to use
    vocab_size  - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
                - if use "char", derived from unfiltered character & symbol counts of custom dataset
                - if use "byte", set to 256 (unicode byte range) 
    ''' 
    if tokenizer in ["pinyin", "char"]:
        with open (f"data/{dataset_name}_{tokenizer}/vocab.txt", "r", encoding="utf-8") as f:
            vocab_char_map = {}
            for i, char in enumerate(f):
                vocab_char_map[char[:-1]] = i
        vocab_size = len(vocab_char_map)
        assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char"

    elif tokenizer == "byte":
        vocab_char_map = None
        vocab_size = 256
    elif tokenizer == "custom":
        with open (dataset_name, "r", encoding="utf-8") as f:
            vocab_char_map = {}
            for i, char in enumerate(f):
                vocab_char_map[char[:-1]] = i
        vocab_size = len(vocab_char_map)

    return vocab_char_map, vocab_size


# convert char to pinyin

def convert_char_to_pinyin(text_list, polyphone = True):
    final_text_list = []
    god_knows_why_en_testset_contains_zh_quote = str.maketrans({'“': '"', '”': '"', '‘': "'", '’': "'"})  # in case librispeech (orig no-pc) test-clean
    custom_trans = str.maketrans({';': ','})  # add custom trans here, to address oov
    for text in text_list:
        char_list = []
        text = text.translate(god_knows_why_en_testset_contains_zh_quote)
        text = text.translate(custom_trans)
        for seg in jieba.cut(text):
            seg_byte_len = len(bytes(seg, 'UTF-8'))
            if seg_byte_len == len(seg):  # if pure alphabets and symbols
                if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
                    char_list.append(" ")
                char_list.extend(seg)
            elif polyphone and seg_byte_len == 3 * len(seg):  # if pure chinese characters
                seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
                for c in seg:
                    if c not in "。,、;:?!《》【】—…":
                        char_list.append(" ")
                    char_list.append(c)
            else:  # if mixed chinese characters, alphabets and symbols
                for c in seg:
                    if ord(c) < 256:
                        char_list.extend(c)
                    else:
                        if c not in "。,、;:?!《》【】—…":
                            char_list.append(" ")
                            char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True))
                        else:  # if is zh punc
                            char_list.append(c)
        final_text_list.append(char_list)

    return final_text_list


# save spectrogram
def save_spectrogram(spectrogram, path):
    plt.figure(figsize=(12, 4))
    plt.imshow(spectrogram, origin='lower', aspect='auto')
    plt.colorbar()
    plt.savefig(path)
    plt.close()


# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
def get_seedtts_testset_metainfo(metalst):
    f = open(metalst); lines = f.readlines(); f.close()
    metainfo = []
    for line in lines:
        if len(line.strip().split('|')) == 5:
            utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|')
        elif len(line.strip().split('|')) == 4:
            utt, prompt_text, prompt_wav, gt_text = line.strip().split('|')
            gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav")
        if not os.path.isabs(prompt_wav):
            prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
        metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav))
    return metainfo


# librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path):
    f = open(metalst); lines = f.readlines(); f.close()
    metainfo = []
    for line in lines:
        ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t')

        # ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.'  # if use librispeech test-clean (no-pc)
        ref_spk_id, ref_chaptr_id, _ =  ref_utt.split('-')
        ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac')

        # gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.'  # if use librispeech test-clean (no-pc)
        gen_spk_id, gen_chaptr_id, _ =  gen_utt.split('-')
        gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac')

        metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav))

    return metainfo


# padded to max length mel batch
def padded_mel_batch(ref_mels):
    max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax()
    padded_ref_mels = []
    for mel in ref_mels:
        padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value = 0)
        padded_ref_mels.append(padded_ref_mel)
    padded_ref_mels = torch.stack(padded_ref_mels)
    padded_ref_mels = padded_ref_mels.permute(0, 2, 1)
    return padded_ref_mels


# get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav

def get_inference_prompt(
    metainfo, 
    speed = 1., tokenizer = "pinyin", polyphone = True, 
    target_sample_rate = 24000, n_mel_channels = 100, hop_length = 256, target_rms = 0.1,
    use_truth_duration = False,
    infer_batch_size = 1, num_buckets = 200, min_secs = 3, max_secs = 40,
):
    prompts_all = []

    min_tokens = min_secs * target_sample_rate // hop_length
    max_tokens = max_secs * target_sample_rate // hop_length

    batch_accum = [0] * num_buckets
    utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = \
        ([[] for _ in range(num_buckets)] for _ in range(6))

    mel_spectrogram = MelSpec(target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length)

    for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):

        # Audio
        ref_audio, ref_sr = torchaudio.load(prompt_wav)
        ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio)))
        if ref_rms < target_rms:
            ref_audio = ref_audio * target_rms / ref_rms
        assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue."
        if ref_sr != target_sample_rate:
            resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
            ref_audio = resampler(ref_audio)

        # Text
        if len(prompt_text[-1].encode('utf-8')) == 1:
            prompt_text = prompt_text + " "
        text = [prompt_text + gt_text]
        if tokenizer == "pinyin":
            text_list = convert_char_to_pinyin(text, polyphone = polyphone)
        else:
            text_list = text

        # Duration, mel frame length
        ref_mel_len = ref_audio.shape[-1] // hop_length
        if use_truth_duration:
            gt_audio, gt_sr = torchaudio.load(gt_wav)
            if gt_sr != target_sample_rate:
                resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate)
                gt_audio = resampler(gt_audio)
            total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed)

            # # test vocoder resynthesis
            # ref_audio = gt_audio
        else:
            ref_text_len = len(prompt_text.encode('utf-8'))
            gen_text_len = len(gt_text.encode('utf-8'))
            total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed)

        # to mel spectrogram
        ref_mel = mel_spectrogram(ref_audio)
        ref_mel = ref_mel.squeeze(0)

        # deal with batch
        assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
        assert min_tokens <= total_mel_len <= max_tokens, \
            f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
        bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)

        utts[bucket_i].append(utt)
        ref_rms_list[bucket_i].append(ref_rms)
        ref_mels[bucket_i].append(ref_mel)
        ref_mel_lens[bucket_i].append(ref_mel_len)
        total_mel_lens[bucket_i].append(total_mel_len)
        final_text_list[bucket_i].extend(text_list)

        batch_accum[bucket_i] += total_mel_len

        if batch_accum[bucket_i] >= infer_batch_size:
            # print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}")
            prompts_all.append((
                utts[bucket_i], 
                ref_rms_list[bucket_i], 
                padded_mel_batch(ref_mels[bucket_i]), 
                ref_mel_lens[bucket_i], 
                total_mel_lens[bucket_i], 
                final_text_list[bucket_i]
            ))
            batch_accum[bucket_i] = 0
            utts[bucket_i], ref_rms_list[bucket_i], ref_mels[bucket_i], ref_mel_lens[bucket_i], total_mel_lens[bucket_i], final_text_list[bucket_i] = [], [], [], [], [], []

    # add residual
    for bucket_i, bucket_frames in enumerate(batch_accum):
        if bucket_frames > 0:
            prompts_all.append((
                utts[bucket_i], 
                ref_rms_list[bucket_i], 
                padded_mel_batch(ref_mels[bucket_i]), 
                ref_mel_lens[bucket_i], 
                total_mel_lens[bucket_i], 
                final_text_list[bucket_i]
            ))
    # not only leave easy work for last workers
    random.seed(666)
    random.shuffle(prompts_all)

    return prompts_all


# get wav_res_ref_text of seed-tts test metalst
# https://github.com/BytedanceSpeech/seed-tts-eval

def get_seed_tts_test(metalst, gen_wav_dir, gpus):
    f = open(metalst)
    lines = f.readlines()
    f.close()

    test_set_ = []
    for line in tqdm(lines):
        if len(line.strip().split('|')) == 5:
            utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|')
        elif len(line.strip().split('|')) == 4:
            utt, prompt_text, prompt_wav, gt_text = line.strip().split('|')

        if not os.path.exists(os.path.join(gen_wav_dir, utt + '.wav')):
            continue
        gen_wav = os.path.join(gen_wav_dir, utt + '.wav')
        if not os.path.isabs(prompt_wav):
            prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)

        test_set_.append((gen_wav, prompt_wav, gt_text))

    num_jobs = len(gpus)
    if num_jobs == 1:
        return [(gpus[0], test_set_)]
    
    wav_per_job = len(test_set_) // num_jobs + 1
    test_set = []
    for i in range(num_jobs):
        test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job]))

    return test_set


# get librispeech test-clean cross sentence test

def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = False):
    f = open(metalst)
    lines = f.readlines()
    f.close()

    test_set_ = []
    for line in tqdm(lines):
        ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t')

        if eval_ground_truth:
            gen_spk_id, gen_chaptr_id, _ =  gen_utt.split('-')
            gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac')
        else:
            if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + '.wav')):
                raise FileNotFoundError(f"Generated wav not found: {gen_utt}")
            gen_wav = os.path.join(gen_wav_dir, gen_utt + '.wav')

        ref_spk_id, ref_chaptr_id, _ =  ref_utt.split('-')
        ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac')

        test_set_.append((gen_wav, ref_wav, gen_txt))

    num_jobs = len(gpus)
    if num_jobs == 1:
        return [(gpus[0], test_set_)]
    
    wav_per_job = len(test_set_) // num_jobs + 1
    test_set = []
    for i in range(num_jobs):
        test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job]))

    return test_set


# load asr model

def load_asr_model(lang, ckpt_dir = ""):
    if lang == "zh":
        from funasr import AutoModel
        model = AutoModel(
            model = os.path.join(ckpt_dir, "paraformer-zh"), 
            # vad_model = os.path.join(ckpt_dir, "fsmn-vad"), 
            # punc_model = os.path.join(ckpt_dir, "ct-punc"),
            # spk_model = os.path.join(ckpt_dir, "cam++"), 
            disable_update=True,
            )  # following seed-tts setting
    elif lang == "en":
        from faster_whisper import WhisperModel
        model_size = "large-v3" if ckpt_dir == "" else ckpt_dir
        model = WhisperModel(model_size, device="cuda", compute_type="float16")
    return model


# WER Evaluation, the way Seed-TTS does

def run_asr_wer(args):
    rank, lang, test_set, ckpt_dir = args

    if lang == "zh":
        import zhconv
        torch.cuda.set_device(rank)
    elif lang == "en":
        os.environ["CUDA_VISIBLE_DEVICES"] = str(rank)
    else:
        raise NotImplementedError("lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now.")

    asr_model = load_asr_model(lang, ckpt_dir = ckpt_dir)
    
    from zhon.hanzi import punctuation
    punctuation_all = punctuation + string.punctuation
    wers = []

    from jiwer import compute_measures
    for gen_wav, prompt_wav, truth in tqdm(test_set):
        if lang == "zh":
            res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True)
            hypo = res[0]["text"]
            hypo = zhconv.convert(hypo, 'zh-cn')
        elif lang == "en":
            segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en")
            hypo = ''
            for segment in segments:
                hypo = hypo + ' ' + segment.text

        # raw_truth = truth
        # raw_hypo = hypo

        for x in punctuation_all:
            truth = truth.replace(x, '')
            hypo = hypo.replace(x, '')

        truth = truth.replace('  ', ' ')
        hypo = hypo.replace('  ', ' ')

        if lang == "zh":
            truth = " ".join([x for x in truth])
            hypo = " ".join([x for x in hypo])
        elif lang == "en":
            truth = truth.lower()
            hypo = hypo.lower()

        measures = compute_measures(truth, hypo)
        wer = measures["wer"]

        # ref_list = truth.split(" ")
        # subs = measures["substitutions"] / len(ref_list)
        # dele = measures["deletions"] / len(ref_list)
        # inse = measures["insertions"] / len(ref_list)

        wers.append(wer)

    return wers


# SIM Evaluation

def run_sim(args):
    rank, test_set, ckpt_dir = args
    device = f"cuda:{rank}"

    model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='wavlm_large', config_path=None)
    state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage)
    model.load_state_dict(state_dict['model'], strict=False)

    use_gpu=True if torch.cuda.is_available() else False
    if use_gpu:
        model = model.cuda(device)
    model.eval()

    sim_list = []
    for wav1, wav2, truth in tqdm(test_set):

        wav1, sr1 = torchaudio.load(wav1)
        wav2, sr2 = torchaudio.load(wav2)

        resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
        resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
        wav1 = resample1(wav1)
        wav2 = resample2(wav2)

        if use_gpu:
            wav1 = wav1.cuda(device)
            wav2 = wav2.cuda(device)
        with torch.no_grad():
            emb1 = model(wav1)
            emb2 = model(wav2)
        
        sim = F.cosine_similarity(emb1, emb2)[0].item()
        # print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
        sim_list.append(sim)
    
    return sim_list


# filter func for dirty data with many repetitions

def repetition_found(text, length = 2, tolerance = 10):
    pattern_count = defaultdict(int)
    for i in range(len(text) - length + 1):
        pattern = text[i:i + length]
        pattern_count[pattern] += 1
    for pattern, count in pattern_count.items():
        if count > tolerance:
            return True
    return False


# load model checkpoint for inference

def load_checkpoint(model, ckpt_path, device, use_ema = True):
    if device != "cpu":
        model = model.half()

    ckpt_type = ckpt_path.split(".")[-1]
    if ckpt_type == "safetensors":
        from safetensors.torch import load_file
        checkpoint = load_file(ckpt_path)
    else:
        checkpoint = torch.load(ckpt_path, weights_only=True)

    if use_ema:
        if ckpt_type == "safetensors":
            checkpoint = {'ema_model_state_dict': checkpoint}
        checkpoint['model_state_dict'] = {k.replace("ema_model.", ""): v for k, v in checkpoint['ema_model_state_dict'].items() if k not in ["initted", "step"]}
        model.load_state_dict(checkpoint['model_state_dict'])
    else:
        if ckpt_type == "safetensors":
            checkpoint = {'model_state_dict': checkpoint}
        model.load_state_dict(checkpoint['model_state_dict'])

    return model.to(device)