File size: 4,839 Bytes
473ef6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import sys
from collections import namedtuple

import click
import torch
from peft import PeftModel
from transformers import (
    AutoModel,
    AutoTokenizer,
    BloomForCausalLM,
    BloomTokenizerFast,
    GenerationConfig,
    LlamaForCausalLM,
    LlamaTokenizer,
)
from utils import generate_prompt


def decide_model(args, device_map):
    ModelClass = namedtuple("ModelClass", ('tokenizer', 'model'))
    _MODEL_CLASSES = {
        "llama": ModelClass(**{
            "tokenizer": LlamaTokenizer,
            "model": LlamaForCausalLM,
        }),
        "chatglm": ModelClass(**{
            "tokenizer": AutoTokenizer, #ChatGLMTokenizer,
            "model":  AutoModel, #ChatGLMForConditionalGeneration,
        }),
        "bloom": ModelClass(**{
            "tokenizer": BloomTokenizerFast,
            "model": BloomForCausalLM,
        }),
        "Auto": ModelClass(**{
            "tokenizer": AutoTokenizer,
            "model": AutoModel,
        })
    }
    model_type = "Auto" if args.model_type not in ["llama", "bloom", "chatglm"] else args.model_type
    
    if model_type == "chatglm":
        tokenizer = _MODEL_CLASSES[model_type].tokenizer.from_pretrained(
            args.base_model,
            trust_remote_code=True
        )
        # todo: ChatGLMForConditionalGeneration revision
        model = _MODEL_CLASSES[model_type].model.from_pretrained(
            args.base_model,
            trust_remote_code=True,
            device_map=device_map
        )
    else:
        tokenizer = _MODEL_CLASSES[model_type].tokenizer.from_pretrained(args.base_model)
        model = _MODEL_CLASSES[model_type].model.from_pretrained(
            args.base_model,
            load_in_8bit=True,
            torch_dtype=torch.float16,
            device_map=device_map
        )

    if model_type == "llama":
        tokenizer.pad_token_id = 0
        tokenizer.padding_side = "left"  # Allow batched inference

    if device_map == "auto":
        model = PeftModel.from_pretrained(
            model,
            args.finetuned_weights,
            torch_dtype=torch.float16,
        )
    else:
        model = PeftModel.from_pretrained(
            model,
            args.finetuned_weights,
            device_map=device_map
        )
    return tokenizer, model


class ModelServe:
    def __init__(
        self,
        load_8bit: bool = True,
        model_type: str = "llama",
        base_model: str = "linhvu/decapoda-research-llama-7b-hf",
        finetuned_weights: str = "/home/holiday01/Downloads/LLaMa/alpaca-7b-chinese/finetuned/llama-7b-hf_alpaca-en-zh",
    ):
        args = locals()
        namedtupler = namedtuple("args", tuple(list(args.keys())))
        local_args = namedtupler(**args)
         
        if torch.cuda.is_available():
            self.device = "cuda:0"
            self.device_map = "auto"
            #self.max_memory = {i: "12GB" for i in range(torch.cuda.device_count())}
            #self.max_memory.update({"cpu": "30GB"})
        else:
        
            self.device = "cpu"
            self.device_map = {"": self.device}

        self.tokenizer, self.model = decide_model(args=local_args, device_map=self.device_map)
        
        # unwind broken decapoda-research config
        self.model.config.pad_token_id = self.tokenizer.pad_token_id = 0  # unk
        self.model.config.bos_token_id = 1
        self.model.config.eos_token_id = 2

        if not load_8bit:
            self.model.half()  # seems to fix bugs for some users.

        self.model.eval()
        if torch.__version__ >= "2" and sys.platform != "win32":
            self.model = torch.compile(self.model)

    def generate(
        self,
        instruction: str,
        input: str,
        temperature: float = 0.7,
        top_p: float = 0.75,
        top_k: int = 40,
        num_beams: int = 4,
        max_new_tokens: int = 1024,
        **kwargs
    ):
        prompt = generate_prompt(instruction, input)
        print(f"Prompt: {prompt}")
        inputs = self.tokenizer(prompt, return_tensors="pt")
        input_ids = inputs["input_ids"].to(self.device)
        generation_config = GenerationConfig(
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            num_beams=num_beams,
            **kwargs,
        )
        print("generating...")
        with torch.no_grad():
            generation_output = self.model.generate(
                input_ids=input_ids,
                generation_config=generation_config,
                return_dict_in_generate=True,
                output_scores=True,
                max_new_tokens=max_new_tokens,
            )
        s = generation_output.sequences[0]
        output = self.tokenizer.decode(s)
        print(f"Output: {output}")
        return output.split("### 回覆:")[1].strip()