Spaces:
Runtime error
Runtime error
File size: 4,839 Bytes
473ef6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import sys
from collections import namedtuple
import click
import torch
from peft import PeftModel
from transformers import (
AutoModel,
AutoTokenizer,
BloomForCausalLM,
BloomTokenizerFast,
GenerationConfig,
LlamaForCausalLM,
LlamaTokenizer,
)
from utils import generate_prompt
def decide_model(args, device_map):
ModelClass = namedtuple("ModelClass", ('tokenizer', 'model'))
_MODEL_CLASSES = {
"llama": ModelClass(**{
"tokenizer": LlamaTokenizer,
"model": LlamaForCausalLM,
}),
"chatglm": ModelClass(**{
"tokenizer": AutoTokenizer, #ChatGLMTokenizer,
"model": AutoModel, #ChatGLMForConditionalGeneration,
}),
"bloom": ModelClass(**{
"tokenizer": BloomTokenizerFast,
"model": BloomForCausalLM,
}),
"Auto": ModelClass(**{
"tokenizer": AutoTokenizer,
"model": AutoModel,
})
}
model_type = "Auto" if args.model_type not in ["llama", "bloom", "chatglm"] else args.model_type
if model_type == "chatglm":
tokenizer = _MODEL_CLASSES[model_type].tokenizer.from_pretrained(
args.base_model,
trust_remote_code=True
)
# todo: ChatGLMForConditionalGeneration revision
model = _MODEL_CLASSES[model_type].model.from_pretrained(
args.base_model,
trust_remote_code=True,
device_map=device_map
)
else:
tokenizer = _MODEL_CLASSES[model_type].tokenizer.from_pretrained(args.base_model)
model = _MODEL_CLASSES[model_type].model.from_pretrained(
args.base_model,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=device_map
)
if model_type == "llama":
tokenizer.pad_token_id = 0
tokenizer.padding_side = "left" # Allow batched inference
if device_map == "auto":
model = PeftModel.from_pretrained(
model,
args.finetuned_weights,
torch_dtype=torch.float16,
)
else:
model = PeftModel.from_pretrained(
model,
args.finetuned_weights,
device_map=device_map
)
return tokenizer, model
class ModelServe:
def __init__(
self,
load_8bit: bool = True,
model_type: str = "llama",
base_model: str = "linhvu/decapoda-research-llama-7b-hf",
finetuned_weights: str = "/home/holiday01/Downloads/LLaMa/alpaca-7b-chinese/finetuned/llama-7b-hf_alpaca-en-zh",
):
args = locals()
namedtupler = namedtuple("args", tuple(list(args.keys())))
local_args = namedtupler(**args)
if torch.cuda.is_available():
self.device = "cuda:0"
self.device_map = "auto"
#self.max_memory = {i: "12GB" for i in range(torch.cuda.device_count())}
#self.max_memory.update({"cpu": "30GB"})
else:
self.device = "cpu"
self.device_map = {"": self.device}
self.tokenizer, self.model = decide_model(args=local_args, device_map=self.device_map)
# unwind broken decapoda-research config
self.model.config.pad_token_id = self.tokenizer.pad_token_id = 0 # unk
self.model.config.bos_token_id = 1
self.model.config.eos_token_id = 2
if not load_8bit:
self.model.half() # seems to fix bugs for some users.
self.model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
self.model = torch.compile(self.model)
def generate(
self,
instruction: str,
input: str,
temperature: float = 0.7,
top_p: float = 0.75,
top_k: int = 40,
num_beams: int = 4,
max_new_tokens: int = 1024,
**kwargs
):
prompt = generate_prompt(instruction, input)
print(f"Prompt: {prompt}")
inputs = self.tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(self.device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
print("generating...")
with torch.no_grad():
generation_output = self.model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = self.tokenizer.decode(s)
print(f"Output: {output}")
return output.split("### 回覆:")[1].strip()
|