Spaces:
Runtime error
Runtime error
File size: 1,282 Bytes
c99135b b5ebdff 12e5567 daea8e2 51ce328 d299b6d daea8e2 b5ebdff c99135b 76f94b0 c99135b c65698c b5ebdff c99135b 0674493 12e5567 687ea03 3a269b1 41ca806 3a269b1 41ca806 858d622 3a269b1 daea8e2 3a269b1 daea8e2 c99135b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import streamlit as st
import wfdb
from datasets import load_dataset
from load_wave import load_wave
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import tensorflow as tf
import os
import numpy as np
dataset = load_dataset("lhoestq/demo1")
st.set_page_config("銘傳大學生物醫學工程學系ECG分析網站")
st.sidebar.markdown(""" **Developed by** [黃之柔](https://www.linkedin.com/in/yjc-86941b101/)
""")
st.sidebar.markdown(""" # **Step 1: 修改load_wave中,取得PhysioNet分析資料**""")
st.sidebar.markdown(""" # **Step 2: 開始分析**""")
def callback():
data = load_wave()
st.line_chart(data)
data = np.array(data.T[1].reshape(1,4000))
path = "./"
checkpoint_path = os.path.join(path,"model.ckpt")
model = Sequential()
model.add(Dense(64, input_shape=(4000,), activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.load_weights(checkpoint_path)
out = np.array(tf.round(model.predict(data)).cpu())[0][0]
if out == 0:
st.text("測試者狀態是 Relax")
else:
st.text("測試者狀態是 Activate")
bt1 = st.button(
"分析",
on_click=callback,
disabled=False,
)
|