Spaces:
Sleeping
Sleeping
"""adapted from https://github.com/keithito/tacotron""" | |
""" | |
Cleaners are transformations that run over the input text at both training and eval time. | |
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" | |
hyperparameter. Some cleaners are English-specific. You'll typically want to use: | |
1. "english_cleaners" for English text | |
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using | |
the Unidecode library (https://pypi.python.org/pypi/Unidecode) | |
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update | |
the symbols in symbols.py to match your data). | |
""" | |
import re | |
from string import punctuation | |
from functools import reduce | |
from unidecode import unidecode | |
from .numerical import normalize_numbers, normalize_currency | |
from .acronyms import AcronymNormalizer | |
from .datestime import normalize_datestime | |
from .letters_and_numbers import normalize_letters_and_numbers | |
from .abbreviations import normalize_abbreviations | |
# Regular expression matching whitespace: | |
_whitespace_re = re.compile(r"\s+") | |
# Regular expression separating words enclosed in curly braces for cleaning | |
_arpa_re = re.compile(r"{[^}]+}|\S+") | |
def expand_abbreviations(text): | |
return normalize_abbreviations(text) | |
def expand_numbers(text): | |
return normalize_numbers(text) | |
def expand_currency(text): | |
return normalize_currency(text) | |
def expand_datestime(text): | |
return normalize_datestime(text) | |
def expand_letters_and_numbers(text): | |
return normalize_letters_and_numbers(text) | |
def lowercase(text): | |
return text.lower() | |
def collapse_whitespace(text): | |
return re.sub(_whitespace_re, " ", text) | |
def separate_acronyms(text): | |
text = re.sub(r"([0-9]+)([a-zA-Z]+)", r"\1 \2", text) | |
text = re.sub(r"([a-zA-Z]+)([0-9]+)", r"\1 \2", text) | |
return text | |
def convert_to_ascii(text): | |
return unidecode(text) | |
def dehyphenize_compound_words(text): | |
text = re.sub(r"(?<=[a-zA-Z0-9])-(?=[a-zA-Z])", " ", text) | |
return text | |
def remove_space_before_punctuation(text): | |
return re.sub(r"\s([{}](?:\s|$))".format(punctuation), r"\1", text) | |
class Cleaner(object): | |
def __init__(self, cleaner_names, phonemedict): | |
self.cleaner_names = cleaner_names | |
self.phonemedict = phonemedict | |
self.acronym_normalizer = AcronymNormalizer(self.phonemedict) | |
def __call__(self, text): | |
for cleaner_name in self.cleaner_names: | |
sequence_fns, word_fns = self.get_cleaner_fns(cleaner_name) | |
for fn in sequence_fns: | |
text = fn(text) | |
text = [ | |
reduce(lambda x, y: y(x), word_fns, split) if split[0] != "{" else split | |
for split in _arpa_re.findall(text) | |
] | |
text = " ".join(text) | |
text = remove_space_before_punctuation(text) | |
return text | |
def get_cleaner_fns(self, cleaner_name): | |
if cleaner_name == "basic_cleaners": | |
sequence_fns = [lowercase, collapse_whitespace] | |
word_fns = [] | |
elif cleaner_name == "english_cleaners": | |
sequence_fns = [collapse_whitespace, convert_to_ascii, lowercase] | |
word_fns = [expand_numbers, expand_abbreviations] | |
elif cleaner_name == "radtts_cleaners": | |
sequence_fns = [ | |
collapse_whitespace, | |
expand_currency, | |
expand_datestime, | |
expand_letters_and_numbers, | |
] | |
word_fns = [expand_numbers, expand_abbreviations] | |
elif cleaner_name == "ukrainian_cleaners": | |
sequence_fns = [lowercase, collapse_whitespace] | |
word_fns = [] | |
elif cleaner_name == "transliteration_cleaners": | |
sequence_fns = [convert_to_ascii, lowercase, collapse_whitespace] | |
else: | |
raise Exception("{} cleaner not supported".format(cleaner_name)) | |
return sequence_fns, word_fns | |