Spaces:
Build error
Build error
File size: 36,955 Bytes
ea6a7ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 |
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import torch
from torch import nn
from common import Encoder, LengthRegulator, ConvAttention
from common import Invertible1x1ConvLUS, Invertible1x1Conv
from common import AffineTransformationLayer, LinearNorm, ExponentialClass
from common import get_mask_from_lengths
from attribute_prediction_model import get_attribute_prediction_model
from alignment import mas_width1 as mas
class FlowStep(nn.Module):
def __init__(
self,
n_mel_channels,
n_context_dim,
n_layers,
affine_model="simple_conv",
scaling_fn="exp",
matrix_decomposition="",
affine_activation="softplus",
use_partial_padding=False,
cache_inverse=False,
):
super(FlowStep, self).__init__()
if matrix_decomposition == "LUS":
self.invtbl_conv = Invertible1x1ConvLUS(
n_mel_channels, cache_inverse=cache_inverse
)
else:
self.invtbl_conv = Invertible1x1Conv(
n_mel_channels, cache_inverse=cache_inverse
)
self.affine_tfn = AffineTransformationLayer(
n_mel_channels,
n_context_dim,
n_layers,
affine_model=affine_model,
scaling_fn=scaling_fn,
affine_activation=affine_activation,
use_partial_padding=use_partial_padding,
)
def enable_inverse_cache(self):
self.invtbl_conv.cache_inverse = True
def forward(self, z, context, inverse=False, seq_lens=None):
if inverse: # for inference z-> mel
z = self.affine_tfn(z, context, inverse, seq_lens=seq_lens)
z = self.invtbl_conv(z, inverse)
return z
else: # training mel->z
z, log_det_W = self.invtbl_conv(z)
z, log_s = self.affine_tfn(z, context, seq_lens=seq_lens)
return z, log_det_W, log_s
class RADTTS(torch.nn.Module):
def __init__(
self,
n_speakers,
n_speaker_dim,
n_text,
n_text_dim,
n_flows,
n_conv_layers_per_step,
n_mel_channels,
n_hidden,
mel_encoder_n_hidden,
dummy_speaker_embedding,
n_early_size,
n_early_every,
n_group_size,
affine_model,
dur_model_config,
f0_model_config,
energy_model_config,
v_model_config=None,
include_modules="dec",
scaling_fn="exp",
matrix_decomposition="",
learn_alignments=False,
affine_activation="softplus",
attn_use_CTC=True,
use_speaker_emb_for_alignment=False,
use_context_lstm=False,
context_lstm_norm=None,
text_encoder_lstm_norm=None,
n_f0_dims=0,
n_energy_avg_dims=0,
context_lstm_w_f0_and_energy=True,
use_first_order_features=False,
unvoiced_bias_activation="",
ap_pred_log_f0=False,
**kwargs,
):
super(RADTTS, self).__init__()
assert n_early_size % 2 == 0
self.do_mel_descaling = kwargs.get("do_mel_descaling", True)
self.n_mel_channels = n_mel_channels
self.n_f0_dims = n_f0_dims # >= 1 to trains with f0
self.n_energy_avg_dims = n_energy_avg_dims # >= 1 trains with energy
self.decoder_use_partial_padding = kwargs.get(
"decoder_use_partial_padding", True
)
self.n_speaker_dim = n_speaker_dim
assert self.n_speaker_dim % 2 == 0
self.speaker_embedding = torch.nn.Embedding(n_speakers, self.n_speaker_dim)
self.embedding = torch.nn.Embedding(n_text, n_text_dim)
self.flows = torch.nn.ModuleList()
self.encoder = Encoder(
encoder_embedding_dim=n_text_dim,
norm_fn=nn.InstanceNorm1d,
lstm_norm_fn=text_encoder_lstm_norm,
)
self.dummy_speaker_embedding = dummy_speaker_embedding
self.learn_alignments = learn_alignments
self.affine_activation = affine_activation
self.include_modules = include_modules
self.attn_use_CTC = bool(attn_use_CTC)
self.use_speaker_emb_for_alignment = use_speaker_emb_for_alignment
self.use_context_lstm = bool(use_context_lstm)
self.context_lstm_norm = context_lstm_norm
self.context_lstm_w_f0_and_energy = context_lstm_w_f0_and_energy
self.length_regulator = LengthRegulator()
self.use_first_order_features = bool(use_first_order_features)
self.decoder_use_unvoiced_bias = kwargs.get("decoder_use_unvoiced_bias", True)
self.ap_pred_log_f0 = ap_pred_log_f0
self.ap_use_unvoiced_bias = kwargs.get("ap_use_unvoiced_bias", True)
self.attn_straight_through_estimator = kwargs.get(
"attn_straight_through_estimator", False
)
if "atn" in include_modules or "dec" in include_modules:
if self.learn_alignments:
if self.use_speaker_emb_for_alignment:
self.attention = ConvAttention(
n_mel_channels, n_text_dim + self.n_speaker_dim
)
else:
self.attention = ConvAttention(n_mel_channels, n_text_dim)
self.n_flows = n_flows
self.n_group_size = n_group_size
n_flowstep_cond_dims = (
self.n_speaker_dim
+ (n_text_dim + n_f0_dims + n_energy_avg_dims) * n_group_size
)
if self.use_context_lstm:
n_in_context_lstm = self.n_speaker_dim + n_text_dim * n_group_size
n_context_lstm_hidden = int(
(self.n_speaker_dim + n_text_dim * n_group_size) / 2
)
if self.context_lstm_w_f0_and_energy:
n_in_context_lstm = n_f0_dims + n_energy_avg_dims + n_text_dim
n_in_context_lstm *= n_group_size
n_in_context_lstm += self.n_speaker_dim
n_context_hidden = n_f0_dims + n_energy_avg_dims + n_text_dim
n_context_hidden = n_context_hidden * n_group_size / 2
n_context_hidden = self.n_speaker_dim + n_context_hidden
n_context_hidden = int(n_context_hidden)
n_flowstep_cond_dims = (
self.n_speaker_dim + n_text_dim * n_group_size
)
self.context_lstm = torch.nn.LSTM(
input_size=n_in_context_lstm,
hidden_size=n_context_lstm_hidden,
num_layers=1,
batch_first=True,
bidirectional=True,
)
if context_lstm_norm is not None:
if "spectral" in context_lstm_norm:
print("Applying spectral norm to context encoder LSTM")
lstm_norm_fn_pntr = torch.nn.utils.spectral_norm
elif "weight" in context_lstm_norm:
print("Applying weight norm to context encoder LSTM")
lstm_norm_fn_pntr = torch.nn.utils.weight_norm
self.context_lstm = lstm_norm_fn_pntr(
self.context_lstm, "weight_hh_l0"
)
self.context_lstm = lstm_norm_fn_pntr(
self.context_lstm, "weight_hh_l0_reverse"
)
if self.n_group_size > 1:
self.unfold_params = {
"kernel_size": (n_group_size, 1),
"stride": n_group_size,
"padding": 0,
"dilation": 1,
}
self.unfold = nn.Unfold(**self.unfold_params)
self.exit_steps = []
self.n_early_size = n_early_size
n_mel_channels = n_mel_channels * n_group_size
for i in range(self.n_flows):
if i > 0 and i % n_early_every == 0: # early exitting
n_mel_channels -= self.n_early_size
self.exit_steps.append(i)
self.flows.append(
FlowStep(
n_mel_channels,
n_flowstep_cond_dims,
n_conv_layers_per_step,
affine_model,
scaling_fn,
matrix_decomposition,
affine_activation=affine_activation,
use_partial_padding=self.decoder_use_partial_padding,
)
)
if "dpm" in include_modules:
dur_model_config["hparams"]["n_speaker_dim"] = n_speaker_dim
self.dur_pred_layer = get_attribute_prediction_model(dur_model_config)
self.use_unvoiced_bias = False
self.use_vpred_module = False
self.ap_use_voiced_embeddings = kwargs.get("ap_use_voiced_embeddings", True)
if self.decoder_use_unvoiced_bias or self.ap_use_unvoiced_bias:
assert unvoiced_bias_activation in {"relu", "exp"}
self.use_unvoiced_bias = True
if unvoiced_bias_activation == "relu":
unvbias_nonlin = nn.ReLU()
elif unvoiced_bias_activation == "exp":
unvbias_nonlin = ExponentialClass()
else:
exit(1) # we won't reach here anyway due to the assertion
self.unvoiced_bias_module = nn.Sequential(
LinearNorm(n_text_dim, 1), unvbias_nonlin
)
# all situations in which the vpred module is necessary
if (
self.ap_use_voiced_embeddings
or self.use_unvoiced_bias
or "vpred" in include_modules
):
self.use_vpred_module = True
if self.use_vpred_module:
v_model_config["hparams"]["n_speaker_dim"] = n_speaker_dim
self.v_pred_module = get_attribute_prediction_model(v_model_config)
# 4 embeddings, first two are scales, second two are biases
if self.ap_use_voiced_embeddings:
self.v_embeddings = torch.nn.Embedding(4, n_text_dim)
if "apm" in include_modules:
f0_model_config["hparams"]["n_speaker_dim"] = n_speaker_dim
energy_model_config["hparams"]["n_speaker_dim"] = n_speaker_dim
if self.use_first_order_features:
f0_model_config["hparams"]["n_in_dim"] = 2
energy_model_config["hparams"]["n_in_dim"] = 2
if (
"spline_flow_params" in f0_model_config["hparams"]
and f0_model_config["hparams"]["spline_flow_params"] is not None
):
f0_model_config["hparams"]["spline_flow_params"][
"n_in_channels"
] = 2
if (
"spline_flow_params" in energy_model_config["hparams"]
and energy_model_config["hparams"]["spline_flow_params"] is not None
):
energy_model_config["hparams"]["spline_flow_params"][
"n_in_channels"
] = 2
else:
if (
"spline_flow_params" in f0_model_config["hparams"]
and f0_model_config["hparams"]["spline_flow_params"] is not None
):
f0_model_config["hparams"]["spline_flow_params"][
"n_in_channels"
] = f0_model_config["hparams"]["n_in_dim"]
if (
"spline_flow_params" in energy_model_config["hparams"]
and energy_model_config["hparams"]["spline_flow_params"] is not None
):
energy_model_config["hparams"]["spline_flow_params"][
"n_in_channels"
] = energy_model_config["hparams"]["n_in_dim"]
self.f0_pred_module = get_attribute_prediction_model(f0_model_config)
self.energy_pred_module = get_attribute_prediction_model(
energy_model_config
)
def is_attribute_unconditional(self):
"""
returns true if the decoder is conditioned on neither energy nor F0
"""
return self.n_f0_dims == 0 and self.n_energy_avg_dims == 0
def encode_speaker(self, spk_ids):
spk_ids = spk_ids * 0 if self.dummy_speaker_embedding else spk_ids
spk_vecs = self.speaker_embedding(spk_ids)
return spk_vecs
def encode_text(self, text, in_lens):
# text_embeddings: b x len_text x n_text_dim
text_embeddings = self.embedding(text).transpose(1, 2)
# text_enc: b x n_text_dim x encoder_dim (512)
if in_lens is None:
text_enc = self.encoder.infer(text_embeddings).transpose(1, 2)
else:
text_enc = self.encoder(text_embeddings, in_lens).transpose(1, 2)
return text_enc, text_embeddings
def preprocess_context(
self, context, speaker_vecs, out_lens=None, f0=None, energy_avg=None
):
if self.n_group_size > 1:
# unfolding zero-padded values
context = self.unfold(context.unsqueeze(-1))
if f0 is not None:
f0 = self.unfold(f0[:, None, :, None])
if energy_avg is not None:
energy_avg = self.unfold(energy_avg[:, None, :, None])
speaker_vecs = speaker_vecs[..., None].expand(-1, -1, context.shape[2])
context_w_spkvec = torch.cat((context, speaker_vecs), 1)
if self.use_context_lstm:
if self.context_lstm_w_f0_and_energy:
if f0 is not None:
context_w_spkvec = torch.cat((context_w_spkvec, f0), 1)
if energy_avg is not None:
context_w_spkvec = torch.cat((context_w_spkvec, energy_avg), 1)
unfolded_out_lens = (out_lens // self.n_group_size).long().cpu()
unfolded_out_lens_packed = nn.utils.rnn.pack_padded_sequence(
context_w_spkvec.transpose(1, 2),
unfolded_out_lens,
batch_first=True,
enforce_sorted=False,
)
self.context_lstm.flatten_parameters()
context_lstm_packed_output, _ = self.context_lstm(unfolded_out_lens_packed)
context_lstm_padded_output, _ = nn.utils.rnn.pad_packed_sequence(
context_lstm_packed_output, batch_first=True
)
context_w_spkvec = context_lstm_padded_output.transpose(1, 2)
if not self.context_lstm_w_f0_and_energy:
if f0 is not None:
context_w_spkvec = torch.cat((context_w_spkvec, f0), 1)
if energy_avg is not None:
context_w_spkvec = torch.cat((context_w_spkvec, energy_avg), 1)
return context_w_spkvec
def enable_inverse_cache(self):
for flow_step in self.flows:
flow_step.enable_inverse_cache()
def fold(self, mel):
"""Inverse of the self.unfold(mel.unsqueeze(-1)) operation used for the
grouping or "squeeze" operation on input
Args:
mel: B x C x T tensor of temporal data
"""
mel = nn.functional.fold(
mel, output_size=(mel.shape[2] * self.n_group_size, 1), **self.unfold_params
).squeeze(-1)
return mel
def binarize_attention(self, attn, in_lens, out_lens):
"""For training purposes only. Binarizes attention with MAS. These will
no longer recieve a gradient
Args:
attn: B x 1 x max_mel_len x max_text_len
"""
b_size = attn.shape[0]
with torch.no_grad():
attn_cpu = attn.data.cpu().numpy()
attn_out = torch.zeros_like(attn)
for ind in range(b_size):
hard_attn = mas(attn_cpu[ind, 0, : out_lens[ind], : in_lens[ind]])
attn_out[ind, 0, : out_lens[ind], : in_lens[ind]] = torch.tensor(
hard_attn, device=attn.get_device()
)
return attn_out
def get_first_order_features(self, feats, out_lens, dilation=1):
"""
feats: b x max_length
out_lens: b-dim
"""
# add an extra column
feats_extended_R = torch.cat(
(feats, torch.zeros_like(feats[:, 0:dilation])), dim=1
)
feats_extended_L = torch.cat(
(torch.zeros_like(feats[:, 0:dilation]), feats), dim=1
)
dfeats_R = feats_extended_R[:, dilation:] - feats
dfeats_L = feats - feats_extended_L[:, 0:-dilation]
return (dfeats_R + dfeats_L) * 0.5
def apply_voice_mask_to_text(self, text_enc, voiced_mask):
"""
text_enc: b x C x N
voiced_mask: b x N
"""
voiced_mask = voiced_mask.unsqueeze(1)
voiced_embedding_s = self.v_embeddings.weight[0:1, :, None]
unvoiced_embedding_s = self.v_embeddings.weight[1:2, :, None]
voiced_embedding_b = self.v_embeddings.weight[2:3, :, None]
unvoiced_embedding_b = self.v_embeddings.weight[3:4, :, None]
scale = torch.sigmoid(
voiced_embedding_s * voiced_mask + unvoiced_embedding_s * (1 - voiced_mask)
)
bias = 0.1 * torch.tanh(
voiced_embedding_b * voiced_mask + unvoiced_embedding_b * (1 - voiced_mask)
)
return text_enc * scale + bias
def forward(
self,
mel,
speaker_ids,
text,
in_lens,
out_lens,
binarize_attention=False,
attn_prior=None,
f0=None,
energy_avg=None,
voiced_mask=None,
p_voiced=None,
):
speaker_vecs = self.encode_speaker(speaker_ids)
text_enc, text_embeddings = self.encode_text(text, in_lens)
log_s_list, log_det_W_list, z_mel = [], [], []
attn = None
attn_soft = None
attn_hard = None
if "atn" in self.include_modules or "dec" in self.include_modules:
# make sure to do the alignments before folding
attn_mask = get_mask_from_lengths(in_lens)[..., None] == 0
text_embeddings_for_attn = text_embeddings
if self.use_speaker_emb_for_alignment:
speaker_vecs_expd = speaker_vecs[:, :, None].expand(
-1, -1, text_embeddings.shape[2]
)
text_embeddings_for_attn = torch.cat(
(text_embeddings_for_attn, speaker_vecs_expd.detach()), 1
)
# attn_mask shld be 1 for unsd t-steps in text_enc_w_spkvec tensor
attn_soft, attn_logprob = self.attention(
mel,
text_embeddings_for_attn,
out_lens,
attn_mask,
key_lens=in_lens,
attn_prior=attn_prior,
)
if binarize_attention:
attn = self.binarize_attention(attn_soft, in_lens, out_lens)
attn_hard = attn
if self.attn_straight_through_estimator:
attn_hard = attn_soft + (attn_hard - attn_soft).detach()
else:
attn = attn_soft
context = torch.bmm(text_enc, attn.squeeze(1).transpose(1, 2))
f0_bias = 0
# unvoiced bias forward pass
if self.use_unvoiced_bias:
f0_bias = self.unvoiced_bias_module(context.permute(0, 2, 1))
f0_bias = -f0_bias[..., 0]
f0_bias = f0_bias * (~voiced_mask.bool()).float()
# mel decoder forward pass
if "dec" in self.include_modules:
if self.n_group_size > 1:
# might truncate some frames at the end, but that's ok
# sometimes referred to as the "squeeeze" operation
# invert this by calling self.fold(mel_or_z)
mel = self.unfold(mel.unsqueeze(-1))
z_out = []
# where context is folded
# mask f0 in case values are interpolated
if f0 is None:
f0_aug = None
else:
if self.decoder_use_unvoiced_bias:
f0_aug = f0 * voiced_mask + f0_bias
else:
f0_aug = f0 * voiced_mask
context_w_spkvec = self.preprocess_context(
context, speaker_vecs, out_lens, f0_aug, energy_avg
)
log_s_list, log_det_W_list, z_out = [], [], []
unfolded_seq_lens = out_lens // self.n_group_size
for i, flow_step in enumerate(self.flows):
if i in self.exit_steps:
z = mel[:, : self.n_early_size]
z_out.append(z)
mel = mel[:, self.n_early_size :]
mel, log_det_W, log_s = flow_step(
mel, context_w_spkvec, seq_lens=unfolded_seq_lens
)
log_s_list.append(log_s)
log_det_W_list.append(log_det_W)
z_out.append(mel)
z_mel = torch.cat(z_out, 1)
# duration predictor forward pass
duration_model_outputs = None
if "dpm" in self.include_modules:
if attn_hard is None:
attn_hard = self.binarize_attention(attn_soft, in_lens, out_lens)
# convert hard attention to durations
attn_hard_reduced = attn_hard.sum(2)[:, 0, :]
duration_model_outputs = self.dur_pred_layer(
torch.detach(text_enc),
torch.detach(speaker_vecs),
torch.detach(attn_hard_reduced.float()),
in_lens,
)
# f0, energy, vpred predictors forward pass
f0_model_outputs = None
energy_model_outputs = None
vpred_model_outputs = None
if "apm" in self.include_modules:
if attn_hard is None:
attn_hard = self.binarize_attention(attn_soft, in_lens, out_lens)
# convert hard attention to durations
if binarize_attention:
text_enc_time_expanded = context.clone()
else:
text_enc_time_expanded = torch.bmm(
text_enc, attn_hard.squeeze(1).transpose(1, 2)
)
if self.use_vpred_module:
# unvoiced bias requires voiced mask prediction
vpred_model_outputs = self.v_pred_module(
torch.detach(text_enc_time_expanded),
torch.detach(speaker_vecs),
torch.detach(voiced_mask),
out_lens,
)
# affine transform context using voiced mask
if self.ap_use_voiced_embeddings:
text_enc_time_expanded = self.apply_voice_mask_to_text(
text_enc_time_expanded, voiced_mask
)
# whether to use the unvoiced bias in the attribute predictor
# circumvent in-place modification
f0_target = f0.clone()
if self.ap_use_unvoiced_bias:
f0_target = torch.detach(f0_target * voiced_mask + f0_bias)
else:
f0_target = torch.detach(f0_target)
# fit to log f0 in f0 predictor
f0_target[voiced_mask.bool()] = torch.log(f0_target[voiced_mask.bool()])
f0_target = f0_target / 6 # scale to ~ [0, 1] in log space
energy_avg = energy_avg * 2 - 1 # scale to ~ [-1, 1]
if self.use_first_order_features:
df0 = self.get_first_order_features(f0_target, out_lens)
denergy_avg = self.get_first_order_features(energy_avg, out_lens)
f0_voiced = torch.cat((f0_target[:, None], df0[:, None]), dim=1)
energy_avg = torch.cat(
(energy_avg[:, None], denergy_avg[:, None]), dim=1
)
f0_voiced = f0_voiced * 3 # scale to ~ 1 std
energy_avg = energy_avg * 3 # scale to ~ 1 std
else:
f0_voiced = f0_target * 2 # scale to ~ 1 std
energy_avg = energy_avg * 1.4 # scale to ~ 1 std
f0_model_outputs = self.f0_pred_module(
text_enc_time_expanded, torch.detach(speaker_vecs), f0_voiced, out_lens
)
energy_model_outputs = self.energy_pred_module(
text_enc_time_expanded, torch.detach(speaker_vecs), energy_avg, out_lens
)
outputs = {
"z_mel": z_mel,
"log_det_W_list": log_det_W_list,
"log_s_list": log_s_list,
"duration_model_outputs": duration_model_outputs,
"f0_model_outputs": f0_model_outputs,
"energy_model_outputs": energy_model_outputs,
"vpred_model_outputs": vpred_model_outputs,
"attn_soft": attn_soft,
"attn": attn,
"text_embeddings": text_embeddings,
"attn_logprob": attn_logprob,
}
return outputs
def infer(
self,
speaker_id,
text,
sigma,
sigma_dur=0.8,
sigma_f0=0.8,
sigma_energy=0.8,
token_dur_scaling=1.0,
token_duration_max=100,
speaker_id_text=None,
speaker_id_attributes=None,
dur=None,
f0=None,
energy_avg=None,
voiced_mask=None,
f0_mean=0.0,
f0_std=0.0,
energy_mean=0.0,
energy_std=0.0,
use_cuda=False,
):
batch_size = text.shape[0]
n_tokens = text.shape[1]
spk_vec = self.encode_speaker(speaker_id)
spk_vec_text, spk_vec_attributes = spk_vec, spk_vec
if speaker_id_text is not None:
spk_vec_text = self.encode_speaker(speaker_id_text)
if speaker_id_attributes is not None:
spk_vec_attributes = self.encode_speaker(speaker_id_attributes)
txt_enc, txt_emb = self.encode_text(text, None)
if dur is None:
# get token durations
if use_cuda:
z_dur = torch.cuda.FloatTensor(batch_size, 1, n_tokens)
else:
z_dur = torch.FloatTensor(batch_size, 1, n_tokens)
z_dur = z_dur.normal_() * sigma_dur
dur = self.dur_pred_layer.infer(z_dur, txt_enc, spk_vec_text)
if dur.shape[-1] < txt_enc.shape[-1]:
to_pad = txt_enc.shape[-1] - dur.shape[2]
pad_fn = nn.ReplicationPad1d((0, to_pad))
dur = pad_fn(dur)
dur = dur[:, 0]
dur = dur.clamp(0, token_duration_max)
dur = dur * token_dur_scaling if token_dur_scaling > 0 else dur
dur = (dur + 0.5).floor().int()
out_lens = dur.sum(1).long().cpu() if dur.shape[0] != 1 else [dur.sum(1)]
max_n_frames = max(out_lens)
out_lens = torch.LongTensor(out_lens).to(txt_enc.device)
# get attributes f0, energy, vpred, etc)
txt_enc_time_expanded = self.length_regulator(
txt_enc.transpose(1, 2), dur
).transpose(1, 2)
if not self.is_attribute_unconditional():
# if explicitly modeling attributes
if voiced_mask is None:
if self.use_vpred_module:
# get logits
voiced_mask = self.v_pred_module.infer(
None, txt_enc_time_expanded, spk_vec_attributes
)
voiced_mask = torch.sigmoid(voiced_mask[:, 0]) > 0.5
voiced_mask = voiced_mask.float()
ap_txt_enc_time_expanded = txt_enc_time_expanded
# voice mask augmentation only used for attribute prediction
if self.ap_use_voiced_embeddings:
ap_txt_enc_time_expanded = self.apply_voice_mask_to_text(
txt_enc_time_expanded, voiced_mask
)
f0_bias = 0
# unvoiced bias forward pass
if self.use_unvoiced_bias:
f0_bias = self.unvoiced_bias_module(
txt_enc_time_expanded.permute(0, 2, 1)
)
f0_bias = -f0_bias[..., 0]
f0_bias = f0_bias * (~voiced_mask.bool()).float()
if f0 is None:
n_f0_feature_channels = 2 if self.use_first_order_features else 1
if use_cuda:
z_f0 = (
torch.cuda.FloatTensor(
batch_size, n_f0_feature_channels, max_n_frames
).normal_()
* sigma_f0
)
else:
z_f0 = (
torch.FloatTensor(
batch_size, n_f0_feature_channels, max_n_frames
).normal_()
* sigma_f0
)
f0 = self.infer_f0(
z_f0,
ap_txt_enc_time_expanded,
spk_vec_attributes,
voiced_mask,
out_lens,
)[:, 0]
if f0_mean > 0.0:
vmask_bool = voiced_mask.bool()
f0_mu, f0_sigma = f0[vmask_bool].mean(), f0[vmask_bool].std()
f0[vmask_bool] = (f0[vmask_bool] - f0_mu) / f0_sigma
f0_std = f0_std if f0_std > 0 else f0_sigma
f0[vmask_bool] = f0[vmask_bool] * f0_std + f0_mean
if energy_avg is None:
n_energy_feature_channels = 2 if self.use_first_order_features else 1
if use_cuda:
z_energy_avg = (
torch.cuda.FloatTensor(
batch_size, n_energy_feature_channels, max_n_frames
).normal_()
* sigma_energy
)
else:
z_energy_avg = (
torch.FloatTensor(
batch_size, n_energy_feature_channels, max_n_frames
).normal_()
* sigma_energy
)
energy_avg = self.infer_energy(
z_energy_avg, ap_txt_enc_time_expanded, spk_vec, out_lens
)[:, 0]
# replication pad, because ungrouping with different group sizes
# may lead to mismatched lengths
if energy_avg.shape[1] < out_lens[0]:
to_pad = out_lens[0] - energy_avg.shape[1]
pad_fn = nn.ReplicationPad1d((0, to_pad))
f0 = pad_fn(f0[None])[0]
energy_avg = pad_fn(energy_avg[None])[0]
if f0.shape[1] < out_lens[0]:
to_pad = out_lens[0] - f0.shape[1]
pad_fn = nn.ReplicationPad1d((0, to_pad))
f0 = pad_fn(f0[None])[0]
if self.decoder_use_unvoiced_bias:
context_w_spkvec = self.preprocess_context(
txt_enc_time_expanded,
spk_vec,
out_lens,
f0 * voiced_mask + f0_bias,
energy_avg,
)
else:
context_w_spkvec = self.preprocess_context(
txt_enc_time_expanded,
spk_vec,
out_lens,
f0 * voiced_mask,
energy_avg,
)
else:
context_w_spkvec = self.preprocess_context(
txt_enc_time_expanded, spk_vec, out_lens, None, None
)
if use_cuda:
residual = torch.cuda.FloatTensor(
batch_size, 80 * self.n_group_size, max_n_frames // self.n_group_size
)
else:
residual = torch.FloatTensor(
batch_size, 80 * self.n_group_size, max_n_frames // self.n_group_size
)
residual = residual.normal_() * sigma
# map from z sample to data
exit_steps_stack = self.exit_steps.copy()
mel = residual[:, len(exit_steps_stack) * self.n_early_size :]
remaining_residual = residual[:, : len(exit_steps_stack) * self.n_early_size]
unfolded_seq_lens = out_lens // self.n_group_size
for i, flow_step in enumerate(reversed(self.flows)):
curr_step = len(self.flows) - i - 1
mel = flow_step(
mel, context_w_spkvec, inverse=True, seq_lens=unfolded_seq_lens
)
if len(exit_steps_stack) > 0 and curr_step == exit_steps_stack[-1]:
# concatenate the next chunk of z
exit_steps_stack.pop()
residual_to_add = remaining_residual[
:, len(exit_steps_stack) * self.n_early_size :
]
remaining_residual = remaining_residual[
:, : len(exit_steps_stack) * self.n_early_size
]
mel = torch.cat((residual_to_add, mel), 1)
if self.n_group_size > 1:
mel = self.fold(mel)
if self.do_mel_descaling:
mel = mel * 2 - 5.5
return {
"mel": mel,
"dur": dur,
"f0": f0,
"energy_avg": energy_avg,
"voiced_mask": voiced_mask,
}
def infer_f0(
self, residual, txt_enc_time_expanded, spk_vec, voiced_mask=None, lens=None
):
f0 = self.f0_pred_module.infer(residual, txt_enc_time_expanded, spk_vec, lens)
if voiced_mask is not None and len(voiced_mask.shape) == 2:
voiced_mask = voiced_mask[:, None]
# constants
if self.ap_pred_log_f0:
if self.use_first_order_features:
f0 = f0[:, 0:1, :] / 3
else:
f0 = f0 / 2
f0 = f0 * 6
else:
f0 = f0 / 6
f0 = f0 / 640
if voiced_mask is None:
voiced_mask = f0 > 0.0
else:
voiced_mask = voiced_mask.bool()
# due to grouping, f0 might be 1 frame short
voiced_mask = voiced_mask[:, :, : f0.shape[-1]]
if self.ap_pred_log_f0:
# if variable is set, decoder sees linear f0
# mask = f0 > 0.0 if voiced_mask is None else voiced_mask.bool()
f0[voiced_mask] = torch.exp(f0[voiced_mask])
f0[~voiced_mask] = 0.0
return f0
def infer_energy(self, residual, txt_enc_time_expanded, spk_vec, lens):
energy = self.energy_pred_module.infer(
residual, txt_enc_time_expanded, spk_vec, lens
)
# magic constants
if self.use_first_order_features:
energy = energy / 3
else:
energy = energy / 1.4
energy = (energy + 1) / 2
return energy
def remove_norms(self):
"""Removes spectral and weightnorms from model. Call before inference"""
for name, module in self.named_modules():
try:
nn.utils.remove_spectral_norm(module, name="weight_hh_l0")
print("Removed spectral norm from {}".format(name))
except:
pass
try:
nn.utils.remove_spectral_norm(module, name="weight_hh_l0_reverse")
print("Removed spectral norm from {}".format(name))
except:
pass
try:
nn.utils.remove_weight_norm(module)
print("Removed wnorm from {}".format(name))
except:
pass
|