File size: 4,800 Bytes
5a1c96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b36e20
5a1c96e
3ce60d5
261b9b6
3ce60d5
261b9b6
3a477b5
4364f4a
1e807fb
 
 
08dbcfc
f2d0d7c
9bba861
7fe9122
5a1c96e
1e807fb
5a1c96e
 
868b712
1e807fb
868b712
 
 
9bba861
868b712
1d685c9
9bba861
f2d0d7c
5a1c96e
29fc20d
 
 
5a1c96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baa7c1b
5a1c96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29fc20d
5a1c96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2d0d7c
 
 
 
5a1c96e
 
 
 
 
29fc20d
5a1c96e
 
 
 
 
 
 
 
 
 
 
 
f2d0d7c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

import streamlit as st
import requests
import numpy as np
from PIL import Image
import warnings
warnings.filterwarnings("ignore")
import requests
import pandas as pd
import numpy as np
from bs4 import BeautifulSoup
import bs4
from urllib.request import urlopen
import time
import re
import time
import matplotlib.pyplot as plt 
import seaborn as sns 
import matplotlib as mpl
import plotly 
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
from plotly.offline import iplot
from plotly.subplots import make_subplots
import plotly.figure_factory as ff
from selenium.webdriver.common.desired_capabilities import DesiredCapabilities
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.chrome.service import Service

import requests
import platform
import zipfile
import os
import subprocess

import os
import subprocess


'''# Make sure the chromedriver is executable
os.chmod('chromedriver', 0o755)
# Set up Chrome options
options = webdriver.ChromeOptions()
options.add_argument('--headless')
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')
from selenium import webdriver

options = webdriver.ChromeOptions()
options.add_argument('--headless')
driver = webdriver.Chrome(options=options)
print("'''''",driver.capabilities['browserVersion'],"''''")
driver.quit()
# Initialize the ChromeDriver
service = Service('chromedriver')
driver = webdriver.Chrome(service=service, options=options)'''

from wuzzuf_scraper import Wuzzuf_scrapping
from linkedin_scraper import LINKEDIN_Scrapping
from data_analysis import map_bubble,linkedin_exp,wuzzuf_exp

####################### stream lit app ################################


st.set_page_config(page_title="My Web_Scrap Page", page_icon=":tada:", layout="wide")


# ---- HEADER SECTION ----
with st.container():
    left_column, right_column = st.columns(2)
    with left_column:
        st.subheader("Hi! I am Yassmen :wave:")
        st.title("An Electronics and Communcation Engineer")
        st.write(
            "In this app we will scrap jobs from LinkedIn and Wuzzuf websites, let's get it started :boom:"
        )
        st.write("[Reach me >](https://www.linkedin.com/in/yassmen-youssef-48439a166/)")
    with right_column:
        st.image("images.jfif", use_column_width=True) 
       # st_lottie(lottie_coding, height=300, key="coding")



import streamlit as st
from streamlit_option_menu import option_menu

#with st.sidebar:
   # selected = option_menu("Main Menu", ["select website", 'search job','numbers of jobs'], icons=['linkedin', 'search','123'], menu_icon="cast", default_index=1)
    
webs =["Wuzzuf","Linkedin"]
jobs =["Machine Learning","AI Engineer","Data Analysis","Software Testing"]
nums = np.arange(1,1000)

#with st.sidebar:
  #if selected == "select website":
site = st.sidebar.selectbox("select one website", webs)
  #elif selected == "search job":
job = st.sidebar.selectbox("select one job", jobs)
  #elif selected == "numbers of jobs":
num_jobs = st.sidebar.selectbox("select num of jobs you want to scrap", nums)



import streamlit.components.v1 as components

import hydralit_components as hc
n2 = pd.DataFrame()

if st.sidebar.button('Start Scrapping'):
  if site =="Wuzzuf":

    with st.container():
        st.write("---")
        tab1, tab2 ,tab3= st.tabs([" Data", " Bubble Map","Data Exploration"])
        with tab1 :
          with st.spinner('✨Now loading...' ):
            time.sleep(5)
            n1 = Wuzzuf_scrapping(job ,num_jobs )
            try:
              tab1.dataframe(n1)
            except:
              try:
                tab1.write(n1.astype(str).set_index(n1.index.astype(str)))  # Success
              except:
                tab1.table(n1)
        with tab2:
          map_bubble(n1)
        with tab3:
          #tab3.plotly_chart(wuzzuf_exp(n1))
          wuzzuf_exp(n1)


  if site =="Linkedin":
    with st.container():
        st.write("---")
'''
  if site =="Linkedin":
    with st.container():
        st.write("---")
        tab1, tab2 ,tab3= st.tabs([" Data", " Bubble Map","Data Exploration"])
        with tab1 :
          with st.spinner('✨Now loading...' ):
            time.sleep(5)
            n1 = LINKEDIN_Scrapping(job ,num_jobs )
            try:
              tab1.dataframe(n1)
            except:
              try:
                tab1.write(n1.astype(str).set_index(n1.index.astype(str)))  # Success
              except:
                tab1.table(n1)
        with tab2:
          map_bubble(n1)
        with tab3:
          linkedin_exp(n1)  # WILL CHANGE'''