File size: 37,708 Bytes
06242ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 |
#include "stc_ml_c.h"
#include <xmmintrin.h>
#include <cmath>
#include <limits>
#include <algorithm>
#include <sstream>
#include <fstream>
#include <iomanip>
#include <string.h> // due to memcpy
#include <boost/random/uniform_int.hpp> // this is required for Marsene-Twister random number generator
#include <boost/random/variate_generator.hpp>
#include <boost/random/mersenne_twister.hpp>
#include "stc_embed_c.h"
#include "stc_extract_c.h"
#include "sse_mathfun.h" // library with optimized functions obtained from http://gruntthepeon.free.fr/ssemath/
// {{{ write_vector_to_file()
template< class T > void write_vector_to_file( uint n, T *ptr, const char* file_name ) {
std::ofstream f( file_name );
for ( uint i = 0; i < n; i++ )
f << std::left << std::setw( 20 ) << i << std::left << std::setw( 20 ) << ptr[i] << std::endl;
f.close();
}
// }}}
// {{{ write_matrix_to_file()
// write column-ordered matrix into file
template< class T > void write_matrix_to_file( uint rows, uint columns, T *ptr, const char* file_name ) {
std::ofstream f( file_name );
for ( uint i = 0; i < rows; i++ ) {
f << std::left << std::setw( 20 ) << i;
for ( uint j = 0; j < columns; j++ )
f << std::left << std::setw( 20 ) << ptr[j * rows + i];
f << std::endl;
}
f.close();
}
// }}}
// {{{ align_*()
// Templates to handle aligned version of new and delete operators.
// These functions are necessary for creating arrays aligned address of certain multiples, such as 16.
template< class T > T* align_new( unsigned int n, unsigned int align_size ) {
char *ptr, *ptr2, *aligned_ptr;
int align_mask = align_size - 1;
ptr = new char[n * sizeof(T) + align_size + sizeof(int)];
if ( ptr == 0 ) return 0;
ptr2 = ptr + sizeof(int);
aligned_ptr = ptr2 + (align_size - ((size_t) ptr2 & align_mask));
ptr2 = aligned_ptr - sizeof(int);
*((int*) ptr2) = (int) (aligned_ptr - ptr);
return (T*) aligned_ptr;
}
template< class T > void align_delete( T *ptr ) {
int *ptr2 = (int*) ptr - 1;
char *p;
p = (char*) ptr;
p -= *ptr2;
delete[] p;
}
// }}}
// {{{ randperm()
/* Generates random permutation of length n based on the MT random number generator with seed 'seed'. */
void randperm( uint n, uint seed, uint* perm ) {
boost::mt19937 *generator = new boost::mt19937( seed );
boost::variate_generator< boost::mt19937, boost::uniform_int< > > *randi = new boost::variate_generator< boost::mt19937,
boost::uniform_int< > >( *generator, boost::uniform_int< >( 0, INT_MAX ) );
// generate random permutation - this is used to shuffle cover pixels to randomize the effect of different neighboring pixels
for ( uint i = 0; i < n; i++ )
perm[i] = i;
for ( uint i = 0; i < n; i++ ) {
uint j = (*randi)() % (n - i);
uint tmp = perm[i];
perm[i] = perm[i + j];
perm[i + j] = tmp;
}
delete generator;
delete randi;
}
// }}}
// {{{ sum_inplace()
inline float sum_inplace( __m128 x ) {
float y;
// add all 4 terms from x together
x = _mm_add_ps( x, _mm_shuffle_ps(x,x,_MM_SHUFFLE(1,0,3,2)) );
x = _mm_add_ps( x, _mm_shuffle_ps(x,x,_MM_SHUFFLE(2,3,0,1)) );
_mm_store_ss( &y, x );
return y;
}
// }}}
// {{{ calc_entropy()
float calc_entropy( uint n, uint k, float* costs, float lambda ) {
float const LOG2 = log( 2.0 );
__m128 inf = _mm_set1_ps( F_INF );
__m128 v_lambda = _mm_set1_ps( -lambda );
__m128 z, d, rho, p, entr, mask;
entr = _mm_setzero_ps();
for ( uint i = 0; i < n / 4; i++ ) {
z = _mm_setzero_ps();
d = _mm_setzero_ps();
for ( uint j = 0; j < k; j++ ) {
rho = _mm_load_ps( costs + j * n + 4 * i ); // costs array must be aligned in memory
p = exp_ps( _mm_mul_ps( v_lambda, rho ) );
z = _mm_add_ps( z, p );
mask = _mm_cmpeq_ps( rho, inf ); // if p<eps, then do not accumulate it to d since x*exp(-x) tends to zero
p = _mm_mul_ps( rho, p );
p = _mm_andnot_ps( mask, p ); // apply mask
d = _mm_add_ps( d, p );
}
entr = _mm_sub_ps( entr, _mm_div_ps( _mm_mul_ps( v_lambda, d ), z ) );
entr = _mm_add_ps( entr, log_ps( z ) );
}
return sum_inplace( entr ) / LOG2;
}
// }}}
// {{{ get_lambda_entropy()
float get_lambda_entropy( uint n, uint k, float *costs, float payload, float initial_lambda = 10 ) {
float p1, p2, p3, lambda1, lambda2, lambda3;
int j = 0;
uint iterations = 0;
lambda1 = 0;
p1 = n * log( (float)k ) / log( 2.0f );
lambda3 = initial_lambda;
p3 = payload + 1; // this is just an initial value
lambda2 = initial_lambda;
while ( p3 > payload ) {
lambda3 *= 2;
p3 = calc_entropy( n, k, costs, lambda3 );
j++;
iterations++;
// beta is probably unbounded => it seems that we cannot find beta such that
// relative payload will be smaller than requested. Binary search does not make sence here.
if ( j > 10 ) {
return lambda3;
}
}
while ( (p1 - p3) / n > payload / n * 1e-2 ) { // binary search for parameter lambda
lambda2 = lambda1 + (lambda3 - lambda1) / 2;
p2 = calc_entropy( n, k, costs, lambda2 );
if ( p2 < payload ) {
lambda3 = lambda2;
p3 = p2;
} else {
lambda1 = lambda2;
p1 = p2;
}
iterations++; // this is for monitoring the number of iterations
}
return lambda1 + (lambda3 - lambda1) / 2;
}
// }}}
// {{{ calc_distortion()
float calc_distortion( uint n, uint k, float* costs, float lambda ) {
__m128 eps = _mm_set1_ps( std::numeric_limits< float >::epsilon() );
__m128 v_lambda = _mm_set1_ps( -lambda );
__m128 z, d, rho, p, dist, mask;
dist = _mm_setzero_ps();
for ( uint i = 0; i < n / 4; i++ ) { // n must be multiple of 4
z = _mm_setzero_ps();
d = _mm_setzero_ps();
for ( uint j = 0; j < k; j++ ) {
rho = _mm_load_ps( costs + j * n + 4 * i ); // costs array must be aligned in memory
p = exp_ps( _mm_mul_ps( v_lambda, rho ) );
z = _mm_add_ps( z, p );
mask = _mm_cmplt_ps( p, eps ); // if p<eps, then do not accumulate it to d since x*exp(-x) tends to zero
p = _mm_mul_ps( rho, p );
p = _mm_andnot_ps( mask, p );
d = _mm_add_ps( d, p );
}
dist = _mm_add_ps( dist, _mm_div_ps( d, z ) );
}
return sum_inplace( dist );
}
// }}}
// {{{ get_lambda_distortion()
float get_lambda_distortion( uint n, uint k, float *costs, float distortion, float initial_lambda = 10, float precision = 1e-3,
uint iter_limit = 30 ) {
float dist1, dist2, dist3, lambda1, lambda2, lambda3;
int j = 0;
uint iterations = 0;
lambda1 = 0;
dist1 = calc_distortion( n, k, costs, lambda1 );
lambda3 = initial_lambda;
dist2 = F_INF; // this is just an initial value
lambda2 = initial_lambda;
dist3 = distortion + 1;
while ( dist3 > distortion ) {
lambda3 *= 2;
dist3 = calc_distortion( n, k, costs, lambda3 );
j++;
iterations++;
// beta is probably unbounded => it seems that we cannot find beta such that
// relative payload will be smaller than requested. Binary search cannot converge.
if ( j > 10 ) {
return lambda3;
}
}
while ( (fabs( dist2 - distortion ) / n > precision) && (iterations < iter_limit) ) { // binary search for parameter lambda
lambda2 = lambda1 + (lambda3 - lambda1) / 2;
dist2 = calc_distortion( n, k, costs, lambda2 );
if ( dist2 < distortion ) {
lambda3 = lambda2;
dist3 = dist2;
} else {
lambda1 = lambda2;
dist1 = dist2;
}
iterations++; // this is for monitoring the number of iterations
}
return lambda1 + (lambda3 - lambda1) / 2;
}
// }}}
// {{{ binary_entropy_array()
float binary_entropy_array( uint n, float *prob ) {
float h = 0;
float const LOG2 = log( 2.0 );
float const EPS = std::numeric_limits< float >::epsilon();
for ( uint i = 0; i < n; i++ )
if ( (prob[i] > EPS) && (1 - prob[i] > EPS) ) h -= prob[i] * log( prob[i] ) + (1 - prob[i]) * log( 1 - prob[i] );
return h / LOG2;
}
// }}}
// {{{ entropy_array()
float entropy_array( uint n, float* prob ) {
double h = 0;
double const LOG2 = log( 2.0 );
double const EPS = std::numeric_limits< double >::epsilon();
for ( uint i = 0; i < n; i++ )
if ( prob[i] > EPS ) h -= prob[i] * log( prob[i] );
return h / LOG2;
}
// }}}
// {{{ mod()
inline uint mod( int x, int m ) {
int tmp = x - (x / m) * m + m;
return tmp % m;
}
// }}}
/* EMBEDDING ALGORITHMS */
// {{{ stc_embed_trial()
void stc_embed_trial( uint n, float* cover_bit_prob0, u8* message, uint stc_constraint_height, uint &num_msg_bits, uint* perm, u8* stego,
uint &trial, uint max_trials, const char* debugging_file = "cost.txt" ) {
bool success = false;
u8* cover = new u8[n];
double* cost = new double[n];
while ( !success ) {
randperm( n, num_msg_bits, perm );
for ( uint i = 0; i < n; i++ ) {
cover[perm[i]] = (cover_bit_prob0[i] < 0.5) ? 1 : 0;
cost[perm[i]] = -log( (1 / std::max( cover_bit_prob0[i], 1 - cover_bit_prob0[i] )) - 1 );
if ( cost[perm[i]] != cost[perm[i]] ) // if p20[i]>1 due to numerical error (this is possible due to float data type)
cost[perm[i]] = D_INF; // then cost2[i] is NaN, it should be Inf
}
memcpy( stego, cover, n ); // initialize stego array by cover array
// debugging
// write_vector_to_file<double>(n, cost, debugging_file);
try {
if ( num_msg_bits != 0 ) stc_embed( cover, n, message, num_msg_bits, (void*) cost, true, stego, stc_constraint_height );
success = true;
} catch ( stc_exception& e ) {
if ( e.error_id != 4 ) { // error_id=4 means No solution exists, thus we try to embed with different permutation.
delete[] cost;
delete[] cover;
throw e;
}
num_msg_bits--; // by decreasing the number of bits, we change the permutation used to shuffle the bits
trial++;
if ( trial > max_trials ) {
delete[] cost;
delete[] cover;
throw stc_exception( "Maximum number of trials in layered construction exceeded (2).", 6 );
}
}
}
delete[] cost;
delete[] cover;
}
// }}}
// {{{ check_costs()
// SANITY CHECKS for cost arrays
void check_costs( uint n, uint k, float *costs ) {
bool test_nan, test_non_inf, test_minus_inf;
for ( uint i = 0; i < n; i++ ) {
test_nan = false; // Is any element NaN? Should be FALSE
test_non_inf = false; // Is any element finite? Should be TRUE
test_minus_inf = false; // Is any element minus Inf? should be FALSE
for ( uint j = 0; j < k; j++ ) {
test_nan |= (costs[k * i + j] != costs[k * i + j]);
test_non_inf |= ((costs[k * i + j] != -F_INF) & (costs[k * i + j] != F_INF));
test_minus_inf |= (costs[k * i + j] == -F_INF);
}
if ( test_nan ) {
std::stringstream ss;
ss << "Incorrect cost array." << i << "-th element contains NaN value. This is not a valid cost.";
throw stc_exception( ss.str(), 6 );
}
if ( !test_non_inf ) {
std::stringstream ss;
ss << "Incorrect cost array." << i << "-th element does not contain any finite cost value. This is not a valid cost.";
throw stc_exception( ss.str(), 6 );
}
if ( test_minus_inf ) {
std::stringstream ss;
ss << "Incorrect cost array." << i << "-th element contains -Inf value. This is not a valid cost.";
throw stc_exception( ss.str(), 6 );
}
}
}
// }}}
// {{{ stc_pm1_pls_embed()
// MULTI-LAYERED EMBEDDING for plus/minus one changes
// payload limited case - returns distortion
float stc_pm1_pls_embed( uint cover_length, int* cover, float* costs, uint message_length, u8* message, // input variables
uint stc_constraint_height, float wet_cost, // other input parameters
int* stego, uint* num_msg_bits, uint &max_trials, float* coding_loss ) { // output variables
return stc_pm1_dls_embed( cover_length, cover, costs, message_length, message, F_INF, stc_constraint_height, 0, wet_cost, stego,
num_msg_bits, max_trials, coding_loss );
}
// }}}
// {{{ stc_pm1_dls_embed()
// distortion limited case - returns distortion
float stc_pm1_dls_embed( uint cover_length, int* cover, float* costs, uint message_length, u8* message, float target_distortion, // input variables
uint stc_constraint_height, float expected_coding_loss, float wet_cost, // other input parameters
int* stego, uint* num_msg_bits, uint &max_trials, float* coding_loss ) { // output variables
check_costs( cover_length, 3, costs );
float dist = 0;
int *stego_values = new int[4 * cover_length];
float *costs_ml2 = new float[4 * cover_length];
for ( uint i = 0; i < cover_length; i++ ) {
costs_ml2[4 * i + mod( (cover[i] - 1 + 4), 4 )] = costs[3 * i + 0]; // set cost of changing by -1
stego_values[4 * i + mod( (cover[i] - 1 + 4), 4 )] = cover[i] - 1;
costs_ml2[4 * i + mod( (cover[i] + 0 + 4), 4 )] = costs[3 * i + 1]; // set cost of changing by 0
stego_values[4 * i + mod( (cover[i] + 0 + 4), 4 )] = cover[i];
costs_ml2[4 * i + mod( (cover[i] + 1 + 4), 4 )] = costs[3 * i + 2]; // set cost of changing by +1
stego_values[4 * i + mod( (cover[i] + 1 + 4), 4 )] = cover[i] + 1;
costs_ml2[4 * i + mod( (cover[i] + 2 + 4), 4 )] = wet_cost; // set cost of changing by +2
stego_values[4 * i + mod( (cover[i] + 2 + 4), 4 )] = cover[i] + 2;
}
// run general 2 layered embedding in distortion limited regime
dist = stc_ml2_embed( cover_length, costs_ml2, stego_values, message_length, message, target_distortion, stc_constraint_height,
expected_coding_loss, stego, num_msg_bits, max_trials, coding_loss );
delete[] costs_ml2;
delete[] stego_values;
return dist;
}
// }}}
// {{{ stc_pm2_dls_embed()
// MULTI-LAYERED EMBEDDING for plus/minus one and two changes
// payload limited case - returns distortion
float stc_pm2_pls_embed( uint cover_length, int* cover, float* costs, uint message_length, u8* message, // input variables
uint stc_constraint_height, float wet_cost, // other input parameters
int* stego, uint* num_msg_bits, uint &max_trials, float* coding_loss ) { // output variables
return stc_pm2_dls_embed( cover_length, cover, costs, message_length, message, F_INF, stc_constraint_height, 0, wet_cost, stego,
num_msg_bits, max_trials, coding_loss );
}
// }}}
// {{{ stc_pm2_dls_embed()
// distortion limited case - returns distortion
float stc_pm2_dls_embed( uint cover_length, int* cover, float* costs, uint message_length, u8* message, float target_distortion, // input variables
uint stc_constraint_height, float expected_coding_loss, float wet_cost, // other input parameters
int* stego, uint* num_msg_bits, uint &max_trials, float* coding_loss ) { // output variables
check_costs( cover_length, 5, costs );
int *stego_values = new int[8 * cover_length];
float* costs_ml3 = new float[8 * cover_length];
std::fill_n( costs_ml3, 8 * cover_length, wet_cost ); // initialize new cost array
for ( uint i = 0; i < cover_length; i++ ) {
costs_ml3[8 * i + mod( (cover[i] - 2 + 8), 8 )] = costs[5 * i + 0]; // set cost of changing by -2
stego_values[8 * i + mod( (cover[i] - 2 + 8), 8 )] = cover[i] - 2;
costs_ml3[8 * i + mod( (cover[i] - 1 + 8), 8 )] = costs[5 * i + 1]; // set cost of changing by -1
stego_values[8 * i + mod( (cover[i] - 1 + 8), 8 )] = cover[i] - 1;
costs_ml3[8 * i + mod( (cover[i] + 0 + 8), 8 )] = costs[5 * i + 2]; // set cost of changing by 0
stego_values[8 * i + mod( (cover[i] + 0 + 8), 8 )] = cover[i] + 0;
costs_ml3[8 * i + mod( (cover[i] + 1 + 8), 8 )] = costs[5 * i + 3]; // set cost of changing by +1
stego_values[8 * i + mod( (cover[i] + 1 + 8), 8 )] = cover[i] + 1;
costs_ml3[8 * i + mod( (cover[i] + 2 + 8), 8 )] = costs[5 * i + 4]; // set cost of changing by +2
stego_values[8 * i + mod( (cover[i] + 2 + 8), 8 )] = cover[i] + 2;
stego_values[8 * i + mod( (cover[i] + 3 + 8), 8 )] = cover[i] + 3; // these values are not used and are defined
stego_values[8 * i + mod( (cover[i] + 4 + 8), 8 )] = cover[i] + 4; // just to have the array complete
stego_values[8 * i + mod( (cover[i] + 5 + 8), 8 )] = cover[i] + 5; //
}
// run general 3 layered embedding in distortion limited regime
float dist = stc_ml3_embed( cover_length, costs_ml3, stego_values, message_length, message, target_distortion, stc_constraint_height,
expected_coding_loss, stego, num_msg_bits, max_trials, coding_loss );
delete[] costs_ml3;
delete[] stego_values;
return dist;
}
// }}}
// GENERAL MULTI-LAYERED EMBEDDING
// {{{ stc_ml1_embed()
// algorithm for embedding into 1 layer, both payload- and distortion-limited case
float stc_ml1_embed( uint cover_length, int* cover, short* direction, float* costs, uint message_length, u8* message,
float target_distortion,// input variables
uint stc_constraint_height, float expected_coding_loss, // other input parameters
int* stego, uint* num_msg_bits, uint &max_trials, float* coding_loss ) { // output variables
float distortion, lambda = 0, m_max = 0;
bool success = false;
uint m_actual = 0;
uint n = cover_length + 4 - (cover_length % 4); // cover length rounded to multiple of 4
uint *perm1 = new uint[n];
float* c = align_new< float > ( 2 * n, 16 );
std::fill_n( c, 2 * n, F_INF );
std::fill_n( c, n, 0 );
for ( uint i = 0; i < cover_length; i++ ) { // copy and transpose data for better reading via SSE instructions
c[mod( cover[i], 2 ) * n + i] = 0; // cost of not changing the element
c[mod( (cover[i] + 1), 2 ) * n + i] = costs[i]; // cost of changing the element
}
if ( target_distortion != F_INF ) { // distortion-limited sender
lambda = get_lambda_distortion( n, 2, c, target_distortion, 2 ); //
m_max = (1 - expected_coding_loss) * calc_entropy( n, 2, c, lambda ); //
m_actual = std::min( message_length, (uint) floor( m_max ) ); //
}
if ( (target_distortion == F_INF) || (m_actual < floor( m_max )) ) { // payload-limited sender
m_actual = std::min( cover_length, message_length ); // or distortion-limited sender with
}
/* SINGLE LAYER OF 1ST LSBs */
num_msg_bits[0] = m_actual;
uint trial = 0;
u8* cover1 = new u8[cover_length];
double* cost1 = new double[cover_length];
u8* stego1 = new u8[cover_length];
while ( !success ) {
randperm( cover_length, num_msg_bits[0], perm1 );
for ( uint i = 0; i < cover_length; i++ ) {
cover1[perm1[i]] = mod( cover[i], 2 );
cost1[perm1[i]] = costs[i];
if ( cost1[perm1[i]] != cost1[perm1[i]] ) cost1[perm1[i]] = D_INF;
}
memcpy( stego1, cover1, cover_length ); // initialize stego array by cover array
// debugging
// write_vector_to_file<double>(n, cost, debugging_file);
try {
if ( num_msg_bits[0] != 0 ) stc_embed( cover1, cover_length, message, num_msg_bits[0], (void*) cost1, true, stego1,
stc_constraint_height );
success = true;
} catch ( stc_exception& e ) {
if ( e.error_id != 4 ) { // error_id=4 means No solution exists, thus we try to embed with different permutation.
delete[] cost1;
delete[] cover1;
delete[] stego1;
delete[] perm1;
delete[] c;
throw e;
}
num_msg_bits[0]--; // by decreasing the number of bits, we change the permutation used to shuffle the bits
trial++;
if ( trial > max_trials ) {
delete[] cost1;
delete[] cover1;
delete[] stego1;
delete[] perm1;
delete[] c;
throw stc_exception( "Maximum number of trials in layered construction exceeded (1).", 6 );
}
}
}
/* FINAL CALCULATIONS */
distortion = 0;
for ( uint i = 0; i < cover_length; i++ ) {
stego[i] = (stego1[perm1[i]] == cover1[perm1[i]]) ? cover[i] : cover[i] + direction[i];
distortion += (stego1[perm1[i]] == cover1[perm1[i]]) ? 0 : costs[i];
}
if ( coding_loss != 0 ) {
float lambda_dist = get_lambda_distortion( n, 2, c, distortion, lambda, 0, 20 ); // use 20 iterations to make lambda_dist precise
float max_payload = calc_entropy( n, 2, c, lambda_dist );
(*coding_loss) = (max_payload - m_actual) / max_payload; // fraction of max_payload lost due to practical coding scheme
}
max_trials = trial;
delete[] cost1;
delete[] cover1;
delete[] stego1;
delete[] perm1;
align_delete< float > ( c );
return distortion;
}
// }}}
// {{{ stc_ml2_embed()
// algorithm for embedding into 2 layers with possibility to use only 1 layer, both payload- and distortion-limited cases
float stc_ml2_embed( uint cover_length, float* costs, int* stego_values, uint message_length, u8* message, float target_distortion, // input variables
uint stc_constraint_height, float expected_coding_loss, // other input parameters
int* stego, uint* num_msg_bits, uint &max_trials, float* coding_loss ) { // output and optional variables
float distortion, dist_coding_loss, lambda = 0, m_max = 0;
uint m_actual = 0;
uint n = cover_length + 4 - (cover_length % 4); // cover length rounded to multiple of 4
check_costs( cover_length, 4, costs );
// if only binary embedding is sufficient, then use only 1st LSB layer
bool lsb1_only = true;
for ( uint i = 0; i < cover_length; i++ ) {
uint n_finite_costs = 0; // number of finite cost values
uint lsb_xor = 0;
for ( uint k = 0; k < 4; k++ )
if ( costs[4 * i + k] != F_INF ) {
n_finite_costs++;
lsb_xor ^= (k % 2);
}
lsb1_only &= ((n_finite_costs <= 2) & (lsb_xor == 1));
}
if ( lsb1_only ) { // use stc_ml1_embed method
distortion = 0;
int *cover = new int[cover_length];
short *direction = new short[cover_length];
float *costs_ml1 = new float[cover_length];
for ( uint i = 0; i < cover_length; i++ ) { // normalize such that minimal element is 0 - this helps numerical stability
uint min_id = 0;
float f_min = F_INF;
for ( uint j = 0; j < 4; j++ )
if ( f_min > costs[4 * i + j] ) {
f_min = costs[4 * i + j]; // minimum value
min_id = j; // index of the minimal entry
}
costs_ml1[i] = F_INF;
cover[i] = stego_values[4 * i + min_id];
for ( uint j = 0; j < 4; j++ )
if ( (costs[4 * i + j] != F_INF) && (min_id != j) ) {
distortion += f_min;
costs_ml1[i] = costs[4 * i + j] - f_min;
direction[i] = stego_values[4 * i + j] - cover[i];
}
}
distortion += stc_ml1_embed( cover_length, cover, direction, costs_ml1, message_length, message, target_distortion,
stc_constraint_height, expected_coding_loss, stego, num_msg_bits, max_trials, coding_loss );
delete[] direction;
delete[] costs_ml1;
delete[] cover;
return distortion;
}
// copy and transpose data for faster reading via SSE instructions
float* c = align_new< float > ( 4 * n, 16 );
std::fill_n( c, 4 * n, F_INF );
std::fill_n( c, n, 0 );
for ( uint i = 0; i < 4 * cover_length; i++ )
c[n * (i % 4) + i / 4] = costs[i];
// write_matrix_to_file<float>(n, 4, c, "cost_ml2.txt");
for ( uint i = 0; i < n; i++ ) { // normalize such that minimal element is 0 - this helps numerical stability
float f_min = F_INF;
for ( uint j = 0; j < 4; j++ )
f_min = std::min( f_min, c[j * n + i] );
for ( uint j = 0; j < 4; j++ )
c[j * n + i] -= f_min;
}
if ( target_distortion != F_INF ) {
lambda = get_lambda_distortion( n, 4, c, target_distortion, 2 );
m_max = (1 - expected_coding_loss) * calc_entropy( n, 4, c, lambda );
m_actual = std::min( message_length, (uint) floor( m_max ) );
}
if ( (target_distortion == F_INF) || (m_actual < floor( m_max )) ) {
m_actual = std::min( 2 * cover_length, message_length );
lambda = get_lambda_entropy( n, 4, c, m_actual, 2 );
}
/*
p = exp(-lambda*costs);
p = p./(ones(4,1)*sum(p));
*/
float* p = align_new< float > ( 4 * n, 16 );
__m128 v_lambda = _mm_set1_ps( -lambda );
for ( uint i = 0; i < n / 4; i++ ) {
__m128 sum = _mm_setzero_ps();
for ( uint j = 0; j < 4; j++ ) {
__m128 x = _mm_load_ps( c + j * n + 4 * i );
x = exp_ps( _mm_mul_ps( v_lambda, x ) );
_mm_store_ps( p + j * n + 4 * i, x );
sum = _mm_add_ps( sum, x );
}
for ( uint j = 0; j < 4; j++ ) {
__m128 x = _mm_load_ps( p + j * n + 4 * i );
x = _mm_div_ps( x, sum );
_mm_store_ps( p + j * n + 4 * i, x );
}
}
// this is for debugging purposes
// float payload_dbg = entropy_array(4*n, p);
uint trial = 0;
float* p10 = new float[cover_length];
float* p20 = new float[cover_length];
u8* stego1 = new u8[cover_length];
u8* stego2 = new u8[cover_length];
uint *perm1 = new uint[cover_length];
uint *perm2 = new uint[cover_length];
/* LAYER OF 2ND LSBs */
for ( uint i = 0; i < cover_length; i++ )
p20[i] = p[i] + p[i + n]; // p20 = p(1,:)+p(2,:); % probability of 2nd LSB of stego equal 0
//num_msg_bits[1] = (uint) floor( binary_entropy_array( cover_length, p20 ) ); // msg_bits(2) = floor(sum(binary_entropy(p20))); % number of msg bits embedded into 2nd LSBs
num_msg_bits[1] = (uint) (message_length/2 /*+ message_length%2*/ ); // XXX
try {
stc_embed_trial( cover_length, p20, message, stc_constraint_height, num_msg_bits[1], perm2, stego2, trial, max_trials, "cost2.txt" );
} catch ( stc_exception& e ) {
delete[] p10;
delete[] p20;
delete[] perm1;
delete[] perm2;
delete[] stego1;
delete[] stego2;
align_delete< float > ( c );
align_delete< float > ( p );
throw e;
}
/* LAYER OF 1ST LSBs */
for ( uint i = 0; i < cover_length; i++ ) //
if ( stego2[perm2[i]] == 0 ) // % conditional probability of 1st LSB of stego equal 0 given LSB2=0
p10[i] = p[i] / (p[i] + p[i + n]); // p10(i) = p(1,i)/(p(1,i)+p(2,i));
else // % conditional probability of 1st LSB of stego equal 0 given LSB2=1
p10[i] = p[i + 2 * n] / (p[i + 2 * n] + p[i + 3 * n]); // p10(i) = p(3,i)/(p(3,i)+p(4,i));
num_msg_bits[0] = m_actual - num_msg_bits[1]; // msg_bits(1) = m_actual-msg_bits(2); % number of msg bits embedded into 1st LSBs
try {
stc_embed_trial( cover_length, p10, message + num_msg_bits[1], stc_constraint_height, num_msg_bits[0], perm1, stego1, trial,
max_trials, "cost1.txt" );
} catch ( stc_exception& e ) {
delete[] p10;
delete[] p20;
delete[] perm1;
delete[] perm2;
delete[] stego1;
delete[] stego2;
align_delete< float > ( c );
align_delete< float > ( p );
throw e;
}
delete[] p10;
delete[] p20;
/* FINAL CALCULATIONS */
distortion = 0;
for ( uint i = 0; i < cover_length; i++ ) {
stego[i] = stego_values[4 * i + 2 * stego2[perm2[i]] + stego1[perm1[i]]];
distortion += costs[4 * i + 2 * stego2[perm2[i]] + stego1[perm1[i]]];
}
if ( coding_loss != 0 ) {
dist_coding_loss = 0;
for ( uint i = 0; i < cover_length; i++ )
dist_coding_loss += c[i + n * (2 * stego2[perm2[i]] + stego1[perm1[i]])];
float lambda_dist = get_lambda_distortion( n, 4, c, dist_coding_loss, lambda, 0, 20 ); // use 20 iterations to make lambda_dist precise
float max_payload = calc_entropy( n, 4, c, lambda_dist );
(*coding_loss) = (max_payload - m_actual) / max_payload; // fraction of max_payload lost due to practical coding scheme
}
max_trials = trial;
delete[] stego1;
delete[] stego2;
delete[] perm1;
delete[] perm2;
align_delete< float > ( c );
align_delete< float > ( p );
return distortion;
}
// }}}
// {{{ stc_ml3_embed()
// algorithm for embedding into 3 layers, both payload- and distortion-limited case
float stc_ml3_embed( uint cover_length, float* costs, int* stego_values, uint message_length, u8* message, float target_distortion, // input variables
uint stc_constraint_height, float expected_coding_loss, // other input parameters
int* stego, uint* num_msg_bits, uint &max_trials, float* coding_loss ) { // output and optional variables
float distortion, dist_coding_loss, lambda = 0, m_max = 0;
uint m_actual = 0;
uint n = cover_length + 4 - (cover_length % 4); // cover length rounded to multiple of 4
check_costs( cover_length, 8, costs );
float* c = align_new< float > ( 8 * n, 16 );
std::fill_n( c, 8 * n, F_INF );
std::fill_n( c, n, 0 );
for ( uint i = 0; i < 8 * cover_length; i++ )
c[n * (i % 8) + i / 8] = costs[i]; // copy and transpose data for better reading via SSE instructions
// write_matrix_to_file<float>(n, 8, c, "cost_ml3.txt");
for ( uint i = 0; i < n; i++ ) { // normalize such that minimal element is 0 - this helps numerical stability
float f_min = F_INF;
for ( uint j = 0; j < 8; j++ )
f_min = std::min( f_min, c[j * n + i] );
for ( uint j = 0; j < 8; j++ )
c[j * n + i] -= f_min;
}
if ( target_distortion != F_INF ) {
lambda = get_lambda_distortion( n, 8, c, target_distortion, 2.0 );
m_max = (1 - expected_coding_loss) * calc_entropy( n, 8, c, lambda );
m_actual = std::min( message_length, (uint) floor( m_max ) );
}
if ( (target_distortion == F_INF) || (m_actual < floor( m_max )) ) {
m_actual = std::min( 3 * cover_length, message_length );
lambda = get_lambda_entropy( n, 8, c, m_actual, 2.0 );
}
/*
p = exp(-lambda*costs);
p = p./(ones(8,1)*sum(p));
*/
float* p = align_new< float > ( 8 * n, 16 );
__m128 v_lambda = _mm_set1_ps( -lambda );
for ( uint i = 0; i < n / 4; i++ ) {
__m128 sum = _mm_setzero_ps();
for ( uint j = 0; j < 8; j++ ) {
__m128 x = _mm_load_ps( c + j * n + 4 * i );
x = exp_ps( _mm_mul_ps( v_lambda, x ) );
_mm_store_ps( p + j * n + 4 * i, x );
sum = _mm_add_ps( sum, x );
}
for ( uint j = 0; j < 8; j++ ) {
__m128 x = _mm_load_ps( p + j * n + 4 * i );
x = _mm_div_ps( x, sum );
_mm_store_ps( p + j * n + 4 * i, x );
}
}
// this is for debugging
// float payload_dbg = entropy_array(8*n, p);
uint trial = 0;
float* p10 = new float[cover_length];
float* p20 = new float[cover_length];
float* p30 = new float[cover_length];
u8* stego1 = new u8[cover_length];
u8* stego2 = new u8[cover_length];
u8* stego3 = new u8[cover_length];
uint *perm1 = new uint[cover_length];
uint *perm2 = new uint[cover_length];
uint *perm3 = new uint[cover_length];
/* LAYER OF 3RD LSBs */
for ( uint i = 0; i < cover_length; i++ )
p30[i] = p[i] + p[i + n] + p[i + 2 * n] + p[i + 3 * n]; //
num_msg_bits[2] = (uint) floor( binary_entropy_array( cover_length, p30 ) ); //
try {
stc_embed_trial( cover_length, p30, message, stc_constraint_height, num_msg_bits[2], perm3, stego3, trial, max_trials, "cost3.txt" );
} catch ( stc_exception& e ) {
delete[] p10;
delete[] p20;
delete[] p30;
delete[] perm1;
delete[] perm2;
delete[] perm3;
delete[] stego1;
delete[] stego2;
delete[] stego3;
align_delete< float > ( c );
align_delete< float > ( p );
throw e;
}
/* LAYER OF 2ND LSBs */
for ( uint i = 0; i < cover_length; i++ ) { //
int s = 4 * stego3[perm3[i]]; // % conditional probability of 2nd LSB of stego equal 0 given LSB3
p20[i] = (p[i + s * n] + p[i + (s + 1) * n]) / (p[i + s * n] + p[i + (s + 1) * n] + p[i + (s + 2) * n] + p[i + (s + 3) * n]);
}
num_msg_bits[1] = (uint) floor( binary_entropy_array( cover_length, p20 ) );// msg_bits(2) = floor(sum(binary_entropy(p20))); % number of msg bits embedded into 2nd LSBs
try {
stc_embed_trial( cover_length, p20, message + num_msg_bits[2], stc_constraint_height, num_msg_bits[1], perm2, stego2, trial,
max_trials, "cost2.txt" );
} catch ( stc_exception& e ) {
delete[] p10;
delete[] p20;
delete[] p30;
delete[] perm1;
delete[] perm2;
delete[] perm3;
delete[] stego1;
delete[] stego2;
delete[] stego3;
align_delete< float > ( c );
align_delete< float > ( p );
throw e;
}
/* LAYER OF 1ST LSBs */
for ( uint i = 0; i < cover_length; i++ ) { //
int s = 4 * stego3[perm3[i]] + 2 * stego2[perm2[i]]; // % conditional probability of 1st LSB of stego equal 0 given LSB3 and LSB2
p10[i] = p[i + s * n] / (p[i + s * n] + p[i + (s + 1) * n]);
}
num_msg_bits[0] = m_actual - num_msg_bits[1] - num_msg_bits[2]; // msg_bits(1) = m_actual-msg_bits(2)-msg_bits(3); % number of msg bits embedded into 1st LSBs
try {
stc_embed_trial( cover_length, p10, message + num_msg_bits[1] + num_msg_bits[2], stc_constraint_height, num_msg_bits[0], perm1,
stego1, trial, max_trials, "cost1.txt" );
} catch ( stc_exception& e ) {
delete[] p10;
delete[] p20;
delete[] p30;
delete[] perm1;
delete[] perm2;
delete[] perm3;
delete[] stego1;
delete[] stego2;
delete[] stego3;
align_delete< float > ( c );
align_delete< float > ( p );
throw e;
}
delete[] p10;
delete[] p20;
delete[] p30;
max_trials = trial;
/* FINAL CALCULATIONS */
distortion = 0;
for ( uint i = 0; i < cover_length; i++ ) {
stego[i] = stego_values[8 * i + 4 * stego3[perm3[i]] + 2 * stego2[perm2[i]] + stego1[perm1[i]]];
distortion += costs[8 * i + 4 * stego3[perm3[i]] + 2 * stego2[perm2[i]] + stego1[perm1[i]]];
}
if ( coding_loss != 0 ) {
dist_coding_loss = 0;
for ( uint i = 0; i < cover_length; i++ )
dist_coding_loss += c[i + n * (4 * stego3[perm3[i]] + 2 * stego2[perm2[i]] + stego1[perm1[i]])];
float lambda_dist = get_lambda_distortion( n, 8, c, dist_coding_loss, lambda, 0, 20 ); // use 20 iterations to make lambda_dist precise
float max_payload = calc_entropy( n, 8, c, lambda_dist );
(*coding_loss) = (max_payload - m_actual) / max_payload; // fraction of max_payload lost due to practical coding scheme
}
delete[] perm1;
delete[] perm2;
delete[] perm3;
delete[] stego1;
delete[] stego2;
delete[] stego3;
align_delete< float > ( c );
align_delete< float > ( p );
return distortion;
}
// }}}
/* EXTRACTION ALGORITHMS */
// {{{ stc_ml_extract()
/** Extraction algorithm for any l-layered construction.
@param stego_length - ...
@param stego - ...
@param msg_bits - ...
@param stc_constraint_height - ...
@param message - ...
*/
void stc_ml_extract( uint stego_length, int* stego, uint num_of_layers, uint* num_msg_bits, // input variables
uint stc_constraint_height, // other input parameters
u8* message ) { // output variables
u8* stego_bits = new u8[stego_length];
u8* msg_ptr = message;
uint *perm = new uint[stego_length];
for ( uint l = num_of_layers; l > 0; l-- ) { // extract message from every layer starting from most significant ones
// extract bits from l-th LSB plane
if ( num_msg_bits[l - 1] > 0 ) {
randperm( stego_length, num_msg_bits[l - 1], perm );
for ( uint i = 0; i < stego_length; i++ )
stego_bits[perm[i]] = mod( stego[i], (1 << l) ) >> (l - 1);
stc_extract( stego_bits, stego_length, msg_ptr, num_msg_bits[l - 1], stc_constraint_height );
msg_ptr += num_msg_bits[l - 1];
}
}
delete[] stego_bits;
delete[] perm;
}
// }}}
|