Yash911 commited on
Commit
6e4332e
·
1 Parent(s): e683840

Upload 2 files

Browse files
Files changed (2) hide show
  1. heart_disease_data.csv +304 -0
  2. heart_disease_prediction.py +174 -0
heart_disease_data.csv ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal,target
2
+ 63,1,3,145,233,1,0,150,0,2.3,0,0,1,1
3
+ 37,1,2,130,250,0,1,187,0,3.5,0,0,2,1
4
+ 41,0,1,130,204,0,0,172,0,1.4,2,0,2,1
5
+ 56,1,1,120,236,0,1,178,0,0.8,2,0,2,1
6
+ 57,0,0,120,354,0,1,163,1,0.6,2,0,2,1
7
+ 57,1,0,140,192,0,1,148,0,0.4,1,0,1,1
8
+ 56,0,1,140,294,0,0,153,0,1.3,1,0,2,1
9
+ 44,1,1,120,263,0,1,173,0,0,2,0,3,1
10
+ 52,1,2,172,199,1,1,162,0,0.5,2,0,3,1
11
+ 57,1,2,150,168,0,1,174,0,1.6,2,0,2,1
12
+ 54,1,0,140,239,0,1,160,0,1.2,2,0,2,1
13
+ 48,0,2,130,275,0,1,139,0,0.2,2,0,2,1
14
+ 49,1,1,130,266,0,1,171,0,0.6,2,0,2,1
15
+ 64,1,3,110,211,0,0,144,1,1.8,1,0,2,1
16
+ 58,0,3,150,283,1,0,162,0,1,2,0,2,1
17
+ 50,0,2,120,219,0,1,158,0,1.6,1,0,2,1
18
+ 58,0,2,120,340,0,1,172,0,0,2,0,2,1
19
+ 66,0,3,150,226,0,1,114,0,2.6,0,0,2,1
20
+ 43,1,0,150,247,0,1,171,0,1.5,2,0,2,1
21
+ 69,0,3,140,239,0,1,151,0,1.8,2,2,2,1
22
+ 59,1,0,135,234,0,1,161,0,0.5,1,0,3,1
23
+ 44,1,2,130,233,0,1,179,1,0.4,2,0,2,1
24
+ 42,1,0,140,226,0,1,178,0,0,2,0,2,1
25
+ 61,1,2,150,243,1,1,137,1,1,1,0,2,1
26
+ 40,1,3,140,199,0,1,178,1,1.4,2,0,3,1
27
+ 71,0,1,160,302,0,1,162,0,0.4,2,2,2,1
28
+ 59,1,2,150,212,1,1,157,0,1.6,2,0,2,1
29
+ 51,1,2,110,175,0,1,123,0,0.6,2,0,2,1
30
+ 65,0,2,140,417,1,0,157,0,0.8,2,1,2,1
31
+ 53,1,2,130,197,1,0,152,0,1.2,0,0,2,1
32
+ 41,0,1,105,198,0,1,168,0,0,2,1,2,1
33
+ 65,1,0,120,177,0,1,140,0,0.4,2,0,3,1
34
+ 44,1,1,130,219,0,0,188,0,0,2,0,2,1
35
+ 54,1,2,125,273,0,0,152,0,0.5,0,1,2,1
36
+ 51,1,3,125,213,0,0,125,1,1.4,2,1,2,1
37
+ 46,0,2,142,177,0,0,160,1,1.4,0,0,2,1
38
+ 54,0,2,135,304,1,1,170,0,0,2,0,2,1
39
+ 54,1,2,150,232,0,0,165,0,1.6,2,0,3,1
40
+ 65,0,2,155,269,0,1,148,0,0.8,2,0,2,1
41
+ 65,0,2,160,360,0,0,151,0,0.8,2,0,2,1
42
+ 51,0,2,140,308,0,0,142,0,1.5,2,1,2,1
43
+ 48,1,1,130,245,0,0,180,0,0.2,1,0,2,1
44
+ 45,1,0,104,208,0,0,148,1,3,1,0,2,1
45
+ 53,0,0,130,264,0,0,143,0,0.4,1,0,2,1
46
+ 39,1,2,140,321,0,0,182,0,0,2,0,2,1
47
+ 52,1,1,120,325,0,1,172,0,0.2,2,0,2,1
48
+ 44,1,2,140,235,0,0,180,0,0,2,0,2,1
49
+ 47,1,2,138,257,0,0,156,0,0,2,0,2,1
50
+ 53,0,2,128,216,0,0,115,0,0,2,0,0,1
51
+ 53,0,0,138,234,0,0,160,0,0,2,0,2,1
52
+ 51,0,2,130,256,0,0,149,0,0.5,2,0,2,1
53
+ 66,1,0,120,302,0,0,151,0,0.4,1,0,2,1
54
+ 62,1,2,130,231,0,1,146,0,1.8,1,3,3,1
55
+ 44,0,2,108,141,0,1,175,0,0.6,1,0,2,1
56
+ 63,0,2,135,252,0,0,172,0,0,2,0,2,1
57
+ 52,1,1,134,201,0,1,158,0,0.8,2,1,2,1
58
+ 48,1,0,122,222,0,0,186,0,0,2,0,2,1
59
+ 45,1,0,115,260,0,0,185,0,0,2,0,2,1
60
+ 34,1,3,118,182,0,0,174,0,0,2,0,2,1
61
+ 57,0,0,128,303,0,0,159,0,0,2,1,2,1
62
+ 71,0,2,110,265,1,0,130,0,0,2,1,2,1
63
+ 54,1,1,108,309,0,1,156,0,0,2,0,3,1
64
+ 52,1,3,118,186,0,0,190,0,0,1,0,1,1
65
+ 41,1,1,135,203,0,1,132,0,0,1,0,1,1
66
+ 58,1,2,140,211,1,0,165,0,0,2,0,2,1
67
+ 35,0,0,138,183,0,1,182,0,1.4,2,0,2,1
68
+ 51,1,2,100,222,0,1,143,1,1.2,1,0,2,1
69
+ 45,0,1,130,234,0,0,175,0,0.6,1,0,2,1
70
+ 44,1,1,120,220,0,1,170,0,0,2,0,2,1
71
+ 62,0,0,124,209,0,1,163,0,0,2,0,2,1
72
+ 54,1,2,120,258,0,0,147,0,0.4,1,0,3,1
73
+ 51,1,2,94,227,0,1,154,1,0,2,1,3,1
74
+ 29,1,1,130,204,0,0,202,0,0,2,0,2,1
75
+ 51,1,0,140,261,0,0,186,1,0,2,0,2,1
76
+ 43,0,2,122,213,0,1,165,0,0.2,1,0,2,1
77
+ 55,0,1,135,250,0,0,161,0,1.4,1,0,2,1
78
+ 51,1,2,125,245,1,0,166,0,2.4,1,0,2,1
79
+ 59,1,1,140,221,0,1,164,1,0,2,0,2,1
80
+ 52,1,1,128,205,1,1,184,0,0,2,0,2,1
81
+ 58,1,2,105,240,0,0,154,1,0.6,1,0,3,1
82
+ 41,1,2,112,250,0,1,179,0,0,2,0,2,1
83
+ 45,1,1,128,308,0,0,170,0,0,2,0,2,1
84
+ 60,0,2,102,318,0,1,160,0,0,2,1,2,1
85
+ 52,1,3,152,298,1,1,178,0,1.2,1,0,3,1
86
+ 42,0,0,102,265,0,0,122,0,0.6,1,0,2,1
87
+ 67,0,2,115,564,0,0,160,0,1.6,1,0,3,1
88
+ 68,1,2,118,277,0,1,151,0,1,2,1,3,1
89
+ 46,1,1,101,197,1,1,156,0,0,2,0,3,1
90
+ 54,0,2,110,214,0,1,158,0,1.6,1,0,2,1
91
+ 58,0,0,100,248,0,0,122,0,1,1,0,2,1
92
+ 48,1,2,124,255,1,1,175,0,0,2,2,2,1
93
+ 57,1,0,132,207,0,1,168,1,0,2,0,3,1
94
+ 52,1,2,138,223,0,1,169,0,0,2,4,2,1
95
+ 54,0,1,132,288,1,0,159,1,0,2,1,2,1
96
+ 45,0,1,112,160,0,1,138,0,0,1,0,2,1
97
+ 53,1,0,142,226,0,0,111,1,0,2,0,3,1
98
+ 62,0,0,140,394,0,0,157,0,1.2,1,0,2,1
99
+ 52,1,0,108,233,1,1,147,0,0.1,2,3,3,1
100
+ 43,1,2,130,315,0,1,162,0,1.9,2,1,2,1
101
+ 53,1,2,130,246,1,0,173,0,0,2,3,2,1
102
+ 42,1,3,148,244,0,0,178,0,0.8,2,2,2,1
103
+ 59,1,3,178,270,0,0,145,0,4.2,0,0,3,1
104
+ 63,0,1,140,195,0,1,179,0,0,2,2,2,1
105
+ 42,1,2,120,240,1,1,194,0,0.8,0,0,3,1
106
+ 50,1,2,129,196,0,1,163,0,0,2,0,2,1
107
+ 68,0,2,120,211,0,0,115,0,1.5,1,0,2,1
108
+ 69,1,3,160,234,1,0,131,0,0.1,1,1,2,1
109
+ 45,0,0,138,236,0,0,152,1,0.2,1,0,2,1
110
+ 50,0,1,120,244,0,1,162,0,1.1,2,0,2,1
111
+ 50,0,0,110,254,0,0,159,0,0,2,0,2,1
112
+ 64,0,0,180,325,0,1,154,1,0,2,0,2,1
113
+ 57,1,2,150,126,1,1,173,0,0.2,2,1,3,1
114
+ 64,0,2,140,313,0,1,133,0,0.2,2,0,3,1
115
+ 43,1,0,110,211,0,1,161,0,0,2,0,3,1
116
+ 55,1,1,130,262,0,1,155,0,0,2,0,2,1
117
+ 37,0,2,120,215,0,1,170,0,0,2,0,2,1
118
+ 41,1,2,130,214,0,0,168,0,2,1,0,2,1
119
+ 56,1,3,120,193,0,0,162,0,1.9,1,0,3,1
120
+ 46,0,1,105,204,0,1,172,0,0,2,0,2,1
121
+ 46,0,0,138,243,0,0,152,1,0,1,0,2,1
122
+ 64,0,0,130,303,0,1,122,0,2,1,2,2,1
123
+ 59,1,0,138,271,0,0,182,0,0,2,0,2,1
124
+ 41,0,2,112,268,0,0,172,1,0,2,0,2,1
125
+ 54,0,2,108,267,0,0,167,0,0,2,0,2,1
126
+ 39,0,2,94,199,0,1,179,0,0,2,0,2,1
127
+ 34,0,1,118,210,0,1,192,0,0.7,2,0,2,1
128
+ 47,1,0,112,204,0,1,143,0,0.1,2,0,2,1
129
+ 67,0,2,152,277,0,1,172,0,0,2,1,2,1
130
+ 52,0,2,136,196,0,0,169,0,0.1,1,0,2,1
131
+ 74,0,1,120,269,0,0,121,1,0.2,2,1,2,1
132
+ 54,0,2,160,201,0,1,163,0,0,2,1,2,1
133
+ 49,0,1,134,271,0,1,162,0,0,1,0,2,1
134
+ 42,1,1,120,295,0,1,162,0,0,2,0,2,1
135
+ 41,1,1,110,235,0,1,153,0,0,2,0,2,1
136
+ 41,0,1,126,306,0,1,163,0,0,2,0,2,1
137
+ 49,0,0,130,269,0,1,163,0,0,2,0,2,1
138
+ 60,0,2,120,178,1,1,96,0,0,2,0,2,1
139
+ 62,1,1,128,208,1,0,140,0,0,2,0,2,1
140
+ 57,1,0,110,201,0,1,126,1,1.5,1,0,1,1
141
+ 64,1,0,128,263,0,1,105,1,0.2,1,1,3,1
142
+ 51,0,2,120,295,0,0,157,0,0.6,2,0,2,1
143
+ 43,1,0,115,303,0,1,181,0,1.2,1,0,2,1
144
+ 42,0,2,120,209,0,1,173,0,0,1,0,2,1
145
+ 67,0,0,106,223,0,1,142,0,0.3,2,2,2,1
146
+ 76,0,2,140,197,0,2,116,0,1.1,1,0,2,1
147
+ 70,1,1,156,245,0,0,143,0,0,2,0,2,1
148
+ 44,0,2,118,242,0,1,149,0,0.3,1,1,2,1
149
+ 60,0,3,150,240,0,1,171,0,0.9,2,0,2,1
150
+ 44,1,2,120,226,0,1,169,0,0,2,0,2,1
151
+ 42,1,2,130,180,0,1,150,0,0,2,0,2,1
152
+ 66,1,0,160,228,0,0,138,0,2.3,2,0,1,1
153
+ 71,0,0,112,149,0,1,125,0,1.6,1,0,2,1
154
+ 64,1,3,170,227,0,0,155,0,0.6,1,0,3,1
155
+ 66,0,2,146,278,0,0,152,0,0,1,1,2,1
156
+ 39,0,2,138,220,0,1,152,0,0,1,0,2,1
157
+ 58,0,0,130,197,0,1,131,0,0.6,1,0,2,1
158
+ 47,1,2,130,253,0,1,179,0,0,2,0,2,1
159
+ 35,1,1,122,192,0,1,174,0,0,2,0,2,1
160
+ 58,1,1,125,220,0,1,144,0,0.4,1,4,3,1
161
+ 56,1,1,130,221,0,0,163,0,0,2,0,3,1
162
+ 56,1,1,120,240,0,1,169,0,0,0,0,2,1
163
+ 55,0,1,132,342,0,1,166,0,1.2,2,0,2,1
164
+ 41,1,1,120,157,0,1,182,0,0,2,0,2,1
165
+ 38,1,2,138,175,0,1,173,0,0,2,4,2,1
166
+ 38,1,2,138,175,0,1,173,0,0,2,4,2,1
167
+ 67,1,0,160,286,0,0,108,1,1.5,1,3,2,0
168
+ 67,1,0,120,229,0,0,129,1,2.6,1,2,3,0
169
+ 62,0,0,140,268,0,0,160,0,3.6,0,2,2,0
170
+ 63,1,0,130,254,0,0,147,0,1.4,1,1,3,0
171
+ 53,1,0,140,203,1,0,155,1,3.1,0,0,3,0
172
+ 56,1,2,130,256,1,0,142,1,0.6,1,1,1,0
173
+ 48,1,1,110,229,0,1,168,0,1,0,0,3,0
174
+ 58,1,1,120,284,0,0,160,0,1.8,1,0,2,0
175
+ 58,1,2,132,224,0,0,173,0,3.2,2,2,3,0
176
+ 60,1,0,130,206,0,0,132,1,2.4,1,2,3,0
177
+ 40,1,0,110,167,0,0,114,1,2,1,0,3,0
178
+ 60,1,0,117,230,1,1,160,1,1.4,2,2,3,0
179
+ 64,1,2,140,335,0,1,158,0,0,2,0,2,0
180
+ 43,1,0,120,177,0,0,120,1,2.5,1,0,3,0
181
+ 57,1,0,150,276,0,0,112,1,0.6,1,1,1,0
182
+ 55,1,0,132,353,0,1,132,1,1.2,1,1,3,0
183
+ 65,0,0,150,225,0,0,114,0,1,1,3,3,0
184
+ 61,0,0,130,330,0,0,169,0,0,2,0,2,0
185
+ 58,1,2,112,230,0,0,165,0,2.5,1,1,3,0
186
+ 50,1,0,150,243,0,0,128,0,2.6,1,0,3,0
187
+ 44,1,0,112,290,0,0,153,0,0,2,1,2,0
188
+ 60,1,0,130,253,0,1,144,1,1.4,2,1,3,0
189
+ 54,1,0,124,266,0,0,109,1,2.2,1,1,3,0
190
+ 50,1,2,140,233,0,1,163,0,0.6,1,1,3,0
191
+ 41,1,0,110,172,0,0,158,0,0,2,0,3,0
192
+ 51,0,0,130,305,0,1,142,1,1.2,1,0,3,0
193
+ 58,1,0,128,216,0,0,131,1,2.2,1,3,3,0
194
+ 54,1,0,120,188,0,1,113,0,1.4,1,1,3,0
195
+ 60,1,0,145,282,0,0,142,1,2.8,1,2,3,0
196
+ 60,1,2,140,185,0,0,155,0,3,1,0,2,0
197
+ 59,1,0,170,326,0,0,140,1,3.4,0,0,3,0
198
+ 46,1,2,150,231,0,1,147,0,3.6,1,0,2,0
199
+ 67,1,0,125,254,1,1,163,0,0.2,1,2,3,0
200
+ 62,1,0,120,267,0,1,99,1,1.8,1,2,3,0
201
+ 65,1,0,110,248,0,0,158,0,0.6,2,2,1,0
202
+ 44,1,0,110,197,0,0,177,0,0,2,1,2,0
203
+ 60,1,0,125,258,0,0,141,1,2.8,1,1,3,0
204
+ 58,1,0,150,270,0,0,111,1,0.8,2,0,3,0
205
+ 68,1,2,180,274,1,0,150,1,1.6,1,0,3,0
206
+ 62,0,0,160,164,0,0,145,0,6.2,0,3,3,0
207
+ 52,1,0,128,255,0,1,161,1,0,2,1,3,0
208
+ 59,1,0,110,239,0,0,142,1,1.2,1,1,3,0
209
+ 60,0,0,150,258,0,0,157,0,2.6,1,2,3,0
210
+ 49,1,2,120,188,0,1,139,0,2,1,3,3,0
211
+ 59,1,0,140,177,0,1,162,1,0,2,1,3,0
212
+ 57,1,2,128,229,0,0,150,0,0.4,1,1,3,0
213
+ 61,1,0,120,260,0,1,140,1,3.6,1,1,3,0
214
+ 39,1,0,118,219,0,1,140,0,1.2,1,0,3,0
215
+ 61,0,0,145,307,0,0,146,1,1,1,0,3,0
216
+ 56,1,0,125,249,1,0,144,1,1.2,1,1,2,0
217
+ 43,0,0,132,341,1,0,136,1,3,1,0,3,0
218
+ 62,0,2,130,263,0,1,97,0,1.2,1,1,3,0
219
+ 63,1,0,130,330,1,0,132,1,1.8,2,3,3,0
220
+ 65,1,0,135,254,0,0,127,0,2.8,1,1,3,0
221
+ 48,1,0,130,256,1,0,150,1,0,2,2,3,0
222
+ 63,0,0,150,407,0,0,154,0,4,1,3,3,0
223
+ 55,1,0,140,217,0,1,111,1,5.6,0,0,3,0
224
+ 65,1,3,138,282,1,0,174,0,1.4,1,1,2,0
225
+ 56,0,0,200,288,1,0,133,1,4,0,2,3,0
226
+ 54,1,0,110,239,0,1,126,1,2.8,1,1,3,0
227
+ 70,1,0,145,174,0,1,125,1,2.6,0,0,3,0
228
+ 62,1,1,120,281,0,0,103,0,1.4,1,1,3,0
229
+ 35,1,0,120,198,0,1,130,1,1.6,1,0,3,0
230
+ 59,1,3,170,288,0,0,159,0,0.2,1,0,3,0
231
+ 64,1,2,125,309,0,1,131,1,1.8,1,0,3,0
232
+ 47,1,2,108,243,0,1,152,0,0,2,0,2,0
233
+ 57,1,0,165,289,1,0,124,0,1,1,3,3,0
234
+ 55,1,0,160,289,0,0,145,1,0.8,1,1,3,0
235
+ 64,1,0,120,246,0,0,96,1,2.2,0,1,2,0
236
+ 70,1,0,130,322,0,0,109,0,2.4,1,3,2,0
237
+ 51,1,0,140,299,0,1,173,1,1.6,2,0,3,0
238
+ 58,1,0,125,300,0,0,171,0,0,2,2,3,0
239
+ 60,1,0,140,293,0,0,170,0,1.2,1,2,3,0
240
+ 77,1,0,125,304,0,0,162,1,0,2,3,2,0
241
+ 35,1,0,126,282,0,0,156,1,0,2,0,3,0
242
+ 70,1,2,160,269,0,1,112,1,2.9,1,1,3,0
243
+ 59,0,0,174,249,0,1,143,1,0,1,0,2,0
244
+ 64,1,0,145,212,0,0,132,0,2,1,2,1,0
245
+ 57,1,0,152,274,0,1,88,1,1.2,1,1,3,0
246
+ 56,1,0,132,184,0,0,105,1,2.1,1,1,1,0
247
+ 48,1,0,124,274,0,0,166,0,0.5,1,0,3,0
248
+ 56,0,0,134,409,0,0,150,1,1.9,1,2,3,0
249
+ 66,1,1,160,246,0,1,120,1,0,1,3,1,0
250
+ 54,1,1,192,283,0,0,195,0,0,2,1,3,0
251
+ 69,1,2,140,254,0,0,146,0,2,1,3,3,0
252
+ 51,1,0,140,298,0,1,122,1,4.2,1,3,3,0
253
+ 43,1,0,132,247,1,0,143,1,0.1,1,4,3,0
254
+ 62,0,0,138,294,1,1,106,0,1.9,1,3,2,0
255
+ 67,1,0,100,299,0,0,125,1,0.9,1,2,2,0
256
+ 59,1,3,160,273,0,0,125,0,0,2,0,2,0
257
+ 45,1,0,142,309,0,0,147,1,0,1,3,3,0
258
+ 58,1,0,128,259,0,0,130,1,3,1,2,3,0
259
+ 50,1,0,144,200,0,0,126,1,0.9,1,0,3,0
260
+ 62,0,0,150,244,0,1,154,1,1.4,1,0,2,0
261
+ 38,1,3,120,231,0,1,182,1,3.8,1,0,3,0
262
+ 66,0,0,178,228,1,1,165,1,1,1,2,3,0
263
+ 52,1,0,112,230,0,1,160,0,0,2,1,2,0
264
+ 53,1,0,123,282,0,1,95,1,2,1,2,3,0
265
+ 63,0,0,108,269,0,1,169,1,1.8,1,2,2,0
266
+ 54,1,0,110,206,0,0,108,1,0,1,1,2,0
267
+ 66,1,0,112,212,0,0,132,1,0.1,2,1,2,0
268
+ 55,0,0,180,327,0,2,117,1,3.4,1,0,2,0
269
+ 49,1,2,118,149,0,0,126,0,0.8,2,3,2,0
270
+ 54,1,0,122,286,0,0,116,1,3.2,1,2,2,0
271
+ 56,1,0,130,283,1,0,103,1,1.6,0,0,3,0
272
+ 46,1,0,120,249,0,0,144,0,0.8,2,0,3,0
273
+ 61,1,3,134,234,0,1,145,0,2.6,1,2,2,0
274
+ 67,1,0,120,237,0,1,71,0,1,1,0,2,0
275
+ 58,1,0,100,234,0,1,156,0,0.1,2,1,3,0
276
+ 47,1,0,110,275,0,0,118,1,1,1,1,2,0
277
+ 52,1,0,125,212,0,1,168,0,1,2,2,3,0
278
+ 58,1,0,146,218,0,1,105,0,2,1,1,3,0
279
+ 57,1,1,124,261,0,1,141,0,0.3,2,0,3,0
280
+ 58,0,1,136,319,1,0,152,0,0,2,2,2,0
281
+ 61,1,0,138,166,0,0,125,1,3.6,1,1,2,0
282
+ 42,1,0,136,315,0,1,125,1,1.8,1,0,1,0
283
+ 52,1,0,128,204,1,1,156,1,1,1,0,0,0
284
+ 59,1,2,126,218,1,1,134,0,2.2,1,1,1,0
285
+ 40,1,0,152,223,0,1,181,0,0,2,0,3,0
286
+ 61,1,0,140,207,0,0,138,1,1.9,2,1,3,0
287
+ 46,1,0,140,311,0,1,120,1,1.8,1,2,3,0
288
+ 59,1,3,134,204,0,1,162,0,0.8,2,2,2,0
289
+ 57,1,1,154,232,0,0,164,0,0,2,1,2,0
290
+ 57,1,0,110,335,0,1,143,1,3,1,1,3,0
291
+ 55,0,0,128,205,0,2,130,1,2,1,1,3,0
292
+ 61,1,0,148,203,0,1,161,0,0,2,1,3,0
293
+ 58,1,0,114,318,0,2,140,0,4.4,0,3,1,0
294
+ 58,0,0,170,225,1,0,146,1,2.8,1,2,1,0
295
+ 67,1,2,152,212,0,0,150,0,0.8,1,0,3,0
296
+ 44,1,0,120,169,0,1,144,1,2.8,0,0,1,0
297
+ 63,1,0,140,187,0,0,144,1,4,2,2,3,0
298
+ 63,0,0,124,197,0,1,136,1,0,1,0,2,0
299
+ 59,1,0,164,176,1,0,90,0,1,1,2,1,0
300
+ 57,0,0,140,241,0,1,123,1,0.2,1,0,3,0
301
+ 45,1,3,110,264,0,1,132,0,1.2,1,0,3,0
302
+ 68,1,0,144,193,1,1,141,0,3.4,1,2,3,0
303
+ 57,1,0,130,131,0,1,115,1,1.2,1,1,3,0
304
+ 57,0,1,130,236,0,0,174,0,0,1,1,2,0
heart_disease_prediction.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Heart_Disease_Prediction.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1cqMvzxYU8QVM8IdfByIymr-3YryFBU5p
8
+
9
+ Importing the Dependencies
10
+ """
11
+
12
+ import numpy as np
13
+ import pandas as pd
14
+ from sklearn.model_selection import train_test_split
15
+ from sklearn.linear_model import LogisticRegression
16
+ from sklearn.metrics import accuracy_score
17
+
18
+ """Data Collection and Processing"""
19
+
20
+ # loading the csv data to a Pandas DataFrame
21
+ heart_data = pd.read_csv('/content/heart_disease_data.csv')
22
+
23
+ # print first 5 rows of the dataset
24
+ heart_data.head()
25
+
26
+ # print last 5 rows of the dataset
27
+ heart_data.tail()
28
+
29
+ # number of rows and columns in the dataset
30
+ heart_data.shape
31
+
32
+ # getting some info about the data
33
+ heart_data.info()
34
+
35
+ # checking for missing values
36
+ heart_data.isnull().sum()
37
+
38
+ # statistical measures about the data
39
+ heart_data.describe()
40
+
41
+ # checking the distribution of Target Variable
42
+ heart_data['target'].value_counts()
43
+
44
+ """1 --> Defective Heart
45
+
46
+ 0 --> Healthy Heart
47
+
48
+ Splitting the Features and Target
49
+ """
50
+
51
+ X = heart_data.drop(columns='target', axis=1)
52
+ Y = heart_data['target']
53
+
54
+ print(X)
55
+
56
+ print(Y)
57
+
58
+ """Splitting the Data into Training data & Test Data"""
59
+
60
+ X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)
61
+
62
+ print(X.shape, X_train.shape, X_test.shape)
63
+
64
+ """Model Training
65
+
66
+ Logistic Regression
67
+ """
68
+
69
+ model = LogisticRegression()
70
+
71
+ # training the LogisticRegression model with Training data
72
+ model.fit(X_train, Y_train)
73
+
74
+ """Model Evaluation
75
+
76
+ Accuracy Score
77
+ """
78
+
79
+ # accuracy on training data
80
+ X_train_prediction = model.predict(X_train)
81
+ training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
82
+
83
+ print('Accuracy on Training data : ', training_data_accuracy)
84
+
85
+ # accuracy on test data
86
+ X_test_prediction = model.predict(X_test)
87
+ test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
88
+
89
+ print('Accuracy on Test data : ', test_data_accuracy)
90
+
91
+ """Building a Predictive System"""
92
+
93
+ def heart_predict(age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal):
94
+ #input_data = (62,0,0,140,268,0,0,160,0,3.6,0,2,2)
95
+ sex=""
96
+ if sex == "male":
97
+ sex = 0
98
+ else:
99
+ sex = 1
100
+
101
+ input_data = (age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal)
102
+ # change the input data to a numpy array
103
+ input_data_as_numpy_array= np.asarray(input_data)
104
+
105
+ # reshape the numpy array as we are predicting for only on instance
106
+ input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
107
+
108
+ prediction = model.predict(input_data_reshaped)
109
+ print(prediction)
110
+
111
+ if (prediction[0]== 0):
112
+ print('The Person does not have a Heart Disease')
113
+ return 'The Person does not have a Heart Disease'
114
+ else:
115
+ print('The Person has Heart Disease')
116
+ return 'The Person has Heart Disease'
117
+
118
+ heart_predict(62,"female",0,140,268,0,0,160,0,3.6,0,2,2)
119
+
120
+ #!pip install gradio
121
+
122
+ import gradio as gr
123
+
124
+
125
+ def heart_predict(age,sex_R,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal):
126
+ #input_data = (62,0,0,140,268,0,0,160,0,3.6,0,2,2)
127
+ sex=""
128
+ if sex == "male":
129
+ sex = 0
130
+ else:
131
+ sex = 1
132
+
133
+
134
+ input_data = (age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal)
135
+ # change the input data to a numpy array
136
+ input_data_as_numpy_array= np.asarray(input_data)
137
+
138
+ # reshape the numpy array as we are predicting for only on instance
139
+ input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
140
+
141
+ prediction = model.predict(input_data_reshaped)
142
+ print(prediction)
143
+
144
+ if (prediction[0]== 0):
145
+ print('The Person does not have a Heart Disease')
146
+ return 'The Person does not have a Heart Disease'
147
+ else:
148
+ print('The Person has Heart Disease')
149
+ return 'The Person has Heart Disease'
150
+
151
+
152
+
153
+ demo = gr.Interface(
154
+ fn=heart_predict,
155
+ inputs = [
156
+ gr.Slider(1, 100, value=62, label="age", info="Choose between 1 and 20"),
157
+ gr.Radio(["male","female"], value="male", label="sex", info="select"),
158
+ gr.Slider(1, 100, value=0, label="cp", info="Choose between 1 and 100"),
159
+ gr.Slider(1, 50, value=140, label="trestbps", info="Choose between 1 and 50"),
160
+ gr.Slider(1, 200, value=268, label="chol", info="Choose between 1 and 200"),
161
+ gr.Slider(1, 100, value=0, label="fbs", info="Choose between 1 and 100"),
162
+ gr.Slider(0.0, 2.0, value=0, label="restecg", info="Choose between 0.0 and 1.0"),
163
+ gr.Slider(1, 100, value=160, label="thalach", info="Choose between 1 and 100"),
164
+ gr.Slider(1, 100, value=0, label="exang", info="Choose between 1 and 100"),
165
+ gr.Slider(1, 100, value=3.6, label="oldpeak", info="Choose between 1 and 100"),
166
+ gr.Slider(1, 100, value=0, label="slope", info="Choose between 1 and 100"),
167
+ gr.Slider(1, 100, value=2, label="ca", info="Choose between 1 and 100"),
168
+ gr.Slider(1, 100, value=2, label="thal", info="Choose between 1 and 100"),
169
+ ],
170
+ outputs = "text",
171
+ )
172
+
173
+ if __name__ == "__main__":
174
+ demo.launch()