Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""Diabetes.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/15IbzL0ARqBYPhh4fx4KN2rJ62USEmIO2 | |
Importing the Dependencies | |
""" | |
#pip install -U scikit-learn | |
import numpy as np | |
import pandas as pd | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.model_selection import train_test_split | |
from sklearn import svm | |
from sklearn.metrics import accuracy_score | |
"""Data Collection and Analysis | |
PIMA Diabetes Dataset | |
""" | |
# loading the diabetes dataset to a pandas DataFrame | |
diabetes_dataset = pd.read_csv('diabetes.csv') | |
# printing the first 5 rows of the dataset | |
diabetes_dataset.head() | |
# number of rows and Columns in this dataset | |
diabetes_dataset.shape | |
# getting the statistical measures of the data | |
diabetes_dataset.describe() | |
diabetes_dataset['Outcome'].value_counts() | |
"""0 --> Non-Diabetic | |
1 --> Diabetic | |
""" | |
diabetes_dataset.groupby('Outcome').mean() | |
# separating the data and labels | |
X = diabetes_dataset.drop(columns = 'Outcome', axis=1) | |
Y = diabetes_dataset['Outcome'] | |
print(X) | |
print(Y) | |
"""Data Standardization""" | |
scaler = StandardScaler() | |
scaler.fit(X) | |
standardized_data = scaler.transform(X) | |
print(standardized_data) | |
X = standardized_data | |
Y = diabetes_dataset['Outcome'] | |
print(X) | |
print(Y) | |
"""Train Test Split""" | |
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.2, stratify=Y, random_state=2) | |
print(X.shape, X_train.shape, X_test.shape) | |
"""Training the Model""" | |
classifier = svm.SVC(kernel='linear') | |
#training the support vector Machine Classifier | |
classifier.fit(X_train, Y_train) | |
"""Model Evaluation | |
Accuracy Score | |
""" | |
# accuracy score on the training data | |
X_train_prediction = classifier.predict(X_train) | |
training_data_accuracy = accuracy_score(X_train_prediction, Y_train) | |
print('Accuracy score of the training data : ', training_data_accuracy) | |
# accuracy score on the test data | |
X_test_prediction = classifier.predict(X_test) | |
test_data_accuracy = accuracy_score(X_test_prediction, Y_test) | |
print('Accuracy score of the test data : ', test_data_accuracy) | |
"""Making a Predictive System""" | |
def predict(Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age): | |
#input_data = (5,166,72,19,175,25.8,0.587,51) | |
input_data = (Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age) | |
# changing the input_data to numpy array | |
input_data_as_numpy_array = np.asarray(input_data) | |
# reshape the array as we are predicting for one instance | |
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1) | |
# standardize the input data | |
std_data = scaler.transform(input_data_reshaped) | |
print(std_data) | |
prediction = classifier.predict(std_data) | |
#print(prediction) | |
if (prediction[0] == 0): | |
print('The person is not diabetic') | |
else: | |
print('The person is diabetic') | |
return prediction | |
predict(4,136,64,20,175,25.6,0.597,50) | |
import gradio as gr | |
def dibetis_predict(Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age): | |
#input_data = (5,166,72,19,175,25.8,0.587,51) | |
input_data = (Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age) | |
# changing the input_data to numpy array | |
input_data_as_numpy_array = np.asarray(input_data) | |
# reshape the array as we are predicting for one instance | |
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1) | |
# standardize the input data | |
std_data = scaler.transform(input_data_reshaped) | |
print(std_data) | |
prediction = classifier.predict(std_data) | |
if (prediction[0] == 0): | |
print('The person is not diabetic') | |
return 'The person is not diabetic' | |
else: | |
print('The person is diabetic') | |
return 'The person is diabetic' | |
demo = gr.Interface( | |
fn=dibetis_predict, | |
inputs = [ | |
gr.Slider(1, 20, value=4, label="Pregnancies", info="Choose between 1 and 20"), | |
gr.Slider(1, 200, value=136, label="Glucose", info="Choose between 1 and 200"), | |
gr.Slider(1, 100, value=64, label="BloodPressure", info="Choose between 1 and 100"), | |
gr.Slider(1, 50, value=20, label="SkinThickness", info="Choose between 1 and 50"), | |
gr.Slider(1, 200, value=175, label="Insulin", info="Choose between 1 and 200"), | |
gr.Slider(1, 100, value=25.5, label="BMI", info="Choose between 1 and 100"), | |
gr.Slider(0, 1.0, value=0.549, label="DiabetesPedigreeFunction", info="Choose between 0.0 and 1.0"), | |
gr.Slider(1, 100, value=50, label="Age", info="Choose between 1 and 100"), | |
], | |
#description="Diabetes Prediction Model By Yash Rawal" | |
gr.Markdown("""Dibetese prediction system by Yash Rawal""") | |
outputs = "text", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |