Spaces:
Running
Running
Delete inference_webui.py
Browse files- inference_webui.py +0 -363
inference_webui.py
DELETED
@@ -1,363 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
gpt_path = os.environ.get(
|
4 |
-
"gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
5 |
-
)
|
6 |
-
sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
7 |
-
cnhubert_base_path = os.environ.get(
|
8 |
-
"cnhubert_base_path", "pretrained_models/chinese-hubert-base"
|
9 |
-
)
|
10 |
-
bert_path = os.environ.get(
|
11 |
-
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large"
|
12 |
-
)
|
13 |
-
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
14 |
-
infer_ttswebui = int(infer_ttswebui)
|
15 |
-
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
16 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
17 |
-
is_half = eval(os.environ.get("is_half", "True"))
|
18 |
-
import gradio as gr
|
19 |
-
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
20 |
-
import numpy as np
|
21 |
-
import librosa,torch
|
22 |
-
from feature_extractor import cnhubert
|
23 |
-
cnhubert.cnhubert_base_path=cnhubert_base_path
|
24 |
-
|
25 |
-
from module.models import SynthesizerTrn
|
26 |
-
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
27 |
-
from text import cleaned_text_to_sequence
|
28 |
-
from text.cleaner import clean_text
|
29 |
-
from time import time as ttime
|
30 |
-
from module.mel_processing import spectrogram_torch
|
31 |
-
from my_utils import load_audio
|
32 |
-
|
33 |
-
device = "cuda"
|
34 |
-
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
35 |
-
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
36 |
-
if is_half == True:
|
37 |
-
bert_model = bert_model.half().to(device)
|
38 |
-
else:
|
39 |
-
bert_model = bert_model.to(device)
|
40 |
-
|
41 |
-
|
42 |
-
# bert_model=bert_model.to(device)
|
43 |
-
def get_bert_feature(text, word2ph):
|
44 |
-
with torch.no_grad():
|
45 |
-
inputs = tokenizer(text, return_tensors="pt")
|
46 |
-
for i in inputs:
|
47 |
-
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
|
48 |
-
res = bert_model(**inputs, output_hidden_states=True)
|
49 |
-
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
50 |
-
assert len(word2ph) == len(text)
|
51 |
-
phone_level_feature = []
|
52 |
-
for i in range(len(word2ph)):
|
53 |
-
repeat_feature = res[i].repeat(word2ph[i], 1)
|
54 |
-
phone_level_feature.append(repeat_feature)
|
55 |
-
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
56 |
-
# if(is_half==True):phone_level_feature=phone_level_feature.half()
|
57 |
-
return phone_level_feature.T
|
58 |
-
|
59 |
-
|
60 |
-
n_semantic = 1024
|
61 |
-
|
62 |
-
dict_s2=torch.load(sovits_path,map_location="cpu")
|
63 |
-
hps=dict_s2["config"]
|
64 |
-
|
65 |
-
class DictToAttrRecursive(dict):
|
66 |
-
def __init__(self, input_dict):
|
67 |
-
super().__init__(input_dict)
|
68 |
-
for key, value in input_dict.items():
|
69 |
-
if isinstance(value, dict):
|
70 |
-
value = DictToAttrRecursive(value)
|
71 |
-
self[key] = value
|
72 |
-
setattr(self, key, value)
|
73 |
-
|
74 |
-
def __getattr__(self, item):
|
75 |
-
try:
|
76 |
-
return self[item]
|
77 |
-
except KeyError:
|
78 |
-
raise AttributeError(f"Attribute {item} not found")
|
79 |
-
|
80 |
-
def __setattr__(self, key, value):
|
81 |
-
if isinstance(value, dict):
|
82 |
-
value = DictToAttrRecursive(value)
|
83 |
-
super(DictToAttrRecursive, self).__setitem__(key, value)
|
84 |
-
super().__setattr__(key, value)
|
85 |
-
|
86 |
-
def __delattr__(self, item):
|
87 |
-
try:
|
88 |
-
del self[item]
|
89 |
-
except KeyError:
|
90 |
-
raise AttributeError(f"Attribute {item} not found")
|
91 |
-
|
92 |
-
|
93 |
-
hps = DictToAttrRecursive(hps)
|
94 |
-
|
95 |
-
hps.model.semantic_frame_rate = "25hz"
|
96 |
-
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
97 |
-
config = dict_s1["config"]
|
98 |
-
ssl_model = cnhubert.get_model()
|
99 |
-
if is_half == True:
|
100 |
-
ssl_model = ssl_model.half().to(device)
|
101 |
-
else:
|
102 |
-
ssl_model = ssl_model.to(device)
|
103 |
-
|
104 |
-
vq_model = SynthesizerTrn(
|
105 |
-
hps.data.filter_length // 2 + 1,
|
106 |
-
hps.train.segment_size // hps.data.hop_length,
|
107 |
-
n_speakers=hps.data.n_speakers,
|
108 |
-
**hps.model
|
109 |
-
)
|
110 |
-
if is_half == True:
|
111 |
-
vq_model = vq_model.half().to(device)
|
112 |
-
else:
|
113 |
-
vq_model = vq_model.to(device)
|
114 |
-
vq_model.eval()
|
115 |
-
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
116 |
-
hz = 50
|
117 |
-
max_sec = config["data"]["max_sec"]
|
118 |
-
# t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo
|
119 |
-
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
|
120 |
-
t2s_model.load_state_dict(dict_s1["weight"])
|
121 |
-
if is_half == True:
|
122 |
-
t2s_model = t2s_model.half()
|
123 |
-
t2s_model = t2s_model.to(device)
|
124 |
-
t2s_model.eval()
|
125 |
-
total = sum([param.nelement() for param in t2s_model.parameters()])
|
126 |
-
print("Number of parameter: %.2fM" % (total / 1e6))
|
127 |
-
|
128 |
-
|
129 |
-
def get_spepc(hps, filename):
|
130 |
-
audio = load_audio(filename, int(hps.data.sampling_rate))
|
131 |
-
audio = torch.FloatTensor(audio)
|
132 |
-
audio_norm = audio
|
133 |
-
audio_norm = audio_norm.unsqueeze(0)
|
134 |
-
spec = spectrogram_torch(
|
135 |
-
audio_norm,
|
136 |
-
hps.data.filter_length,
|
137 |
-
hps.data.sampling_rate,
|
138 |
-
hps.data.hop_length,
|
139 |
-
hps.data.win_length,
|
140 |
-
center=False,
|
141 |
-
)
|
142 |
-
return spec
|
143 |
-
|
144 |
-
|
145 |
-
dict_language = {"中文": "zh", "英文": "en", "日文": "ja"}
|
146 |
-
|
147 |
-
|
148 |
-
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
|
149 |
-
t0 = ttime()
|
150 |
-
prompt_text = prompt_text.strip("\n")
|
151 |
-
prompt_language, text = prompt_language, text.strip("\n")
|
152 |
-
with torch.no_grad():
|
153 |
-
wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙
|
154 |
-
wav16k = torch.from_numpy(wav16k)
|
155 |
-
if is_half == True:
|
156 |
-
wav16k = wav16k.half().to(device)
|
157 |
-
else:
|
158 |
-
wav16k = wav16k.to(device)
|
159 |
-
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
160 |
-
"last_hidden_state"
|
161 |
-
].transpose(
|
162 |
-
1, 2
|
163 |
-
) # .float()
|
164 |
-
codes = vq_model.extract_latent(ssl_content)
|
165 |
-
prompt_semantic = codes[0, 0]
|
166 |
-
t1 = ttime()
|
167 |
-
prompt_language = dict_language[prompt_language]
|
168 |
-
text_language = dict_language[text_language]
|
169 |
-
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
|
170 |
-
phones1 = cleaned_text_to_sequence(phones1)
|
171 |
-
texts = text.split("\n")
|
172 |
-
audio_opt = []
|
173 |
-
zero_wav = np.zeros(
|
174 |
-
int(hps.data.sampling_rate * 0.3),
|
175 |
-
dtype=np.float16 if is_half == True else np.float32,
|
176 |
-
)
|
177 |
-
for text in texts:
|
178 |
-
# 解决输入目标文本的空行导致报错的问题
|
179 |
-
if (len(text.strip()) == 0):
|
180 |
-
continue
|
181 |
-
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
|
182 |
-
phones2 = cleaned_text_to_sequence(phones2)
|
183 |
-
if prompt_language == "zh":
|
184 |
-
bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
|
185 |
-
else:
|
186 |
-
bert1 = torch.zeros(
|
187 |
-
(1024, len(phones1)),
|
188 |
-
dtype=torch.float16 if is_half == True else torch.float32,
|
189 |
-
).to(device)
|
190 |
-
if text_language == "zh":
|
191 |
-
bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
|
192 |
-
else:
|
193 |
-
bert2 = torch.zeros((1024, len(phones2))).to(bert1)
|
194 |
-
bert = torch.cat([bert1, bert2], 1)
|
195 |
-
|
196 |
-
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
197 |
-
bert = bert.to(device).unsqueeze(0)
|
198 |
-
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
199 |
-
prompt = prompt_semantic.unsqueeze(0).to(device)
|
200 |
-
t2 = ttime()
|
201 |
-
with torch.no_grad():
|
202 |
-
# pred_semantic = t2s_model.model.infer(
|
203 |
-
pred_semantic, idx = t2s_model.model.infer_panel(
|
204 |
-
all_phoneme_ids,
|
205 |
-
all_phoneme_len,
|
206 |
-
prompt,
|
207 |
-
bert,
|
208 |
-
# prompt_phone_len=ph_offset,
|
209 |
-
top_k=config["inference"]["top_k"],
|
210 |
-
early_stop_num=hz * max_sec,
|
211 |
-
)
|
212 |
-
t3 = ttime()
|
213 |
-
# print(pred_semantic.shape,idx)
|
214 |
-
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
215 |
-
0
|
216 |
-
) # .unsqueeze(0)#mq要多unsqueeze一次
|
217 |
-
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
218 |
-
if is_half == True:
|
219 |
-
refer = refer.half().to(device)
|
220 |
-
else:
|
221 |
-
refer = refer.to(device)
|
222 |
-
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
223 |
-
audio = (
|
224 |
-
vq_model.decode(
|
225 |
-
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
226 |
-
)
|
227 |
-
.detach()
|
228 |
-
.cpu()
|
229 |
-
.numpy()[0, 0]
|
230 |
-
) ###试试重建不带上prompt部分
|
231 |
-
audio_opt.append(audio)
|
232 |
-
audio_opt.append(zero_wav)
|
233 |
-
t4 = ttime()
|
234 |
-
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
235 |
-
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
236 |
-
np.int16
|
237 |
-
)
|
238 |
-
|
239 |
-
|
240 |
-
splits = {
|
241 |
-
",",
|
242 |
-
"。",
|
243 |
-
"?",
|
244 |
-
"!",
|
245 |
-
",",
|
246 |
-
".",
|
247 |
-
"?",
|
248 |
-
"!",
|
249 |
-
"~",
|
250 |
-
":",
|
251 |
-
":",
|
252 |
-
"—",
|
253 |
-
"…",
|
254 |
-
} # 不考虑省略号
|
255 |
-
|
256 |
-
|
257 |
-
def split(todo_text):
|
258 |
-
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
259 |
-
if todo_text[-1] not in splits:
|
260 |
-
todo_text += "。"
|
261 |
-
i_split_head = i_split_tail = 0
|
262 |
-
len_text = len(todo_text)
|
263 |
-
todo_texts = []
|
264 |
-
while 1:
|
265 |
-
if i_split_head >= len_text:
|
266 |
-
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
267 |
-
if todo_text[i_split_head] in splits:
|
268 |
-
i_split_head += 1
|
269 |
-
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
270 |
-
i_split_tail = i_split_head
|
271 |
-
else:
|
272 |
-
i_split_head += 1
|
273 |
-
return todo_texts
|
274 |
-
|
275 |
-
|
276 |
-
def cut1(inp):
|
277 |
-
inp = inp.strip("\n")
|
278 |
-
inps = split(inp)
|
279 |
-
split_idx = list(range(0, len(inps), 5))
|
280 |
-
split_idx[-1] = None
|
281 |
-
if len(split_idx) > 1:
|
282 |
-
opts = []
|
283 |
-
for idx in range(len(split_idx) - 1):
|
284 |
-
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
|
285 |
-
else:
|
286 |
-
opts = [inp]
|
287 |
-
return "\n".join(opts)
|
288 |
-
|
289 |
-
|
290 |
-
def cut2(inp):
|
291 |
-
inp = inp.strip("\n")
|
292 |
-
inps = split(inp)
|
293 |
-
if len(inps) < 2:
|
294 |
-
return [inp]
|
295 |
-
opts = []
|
296 |
-
summ = 0
|
297 |
-
tmp_str = ""
|
298 |
-
for i in range(len(inps)):
|
299 |
-
summ += len(inps[i])
|
300 |
-
tmp_str += inps[i]
|
301 |
-
if summ > 50:
|
302 |
-
summ = 0
|
303 |
-
opts.append(tmp_str)
|
304 |
-
tmp_str = ""
|
305 |
-
if tmp_str != "":
|
306 |
-
opts.append(tmp_str)
|
307 |
-
if len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
308 |
-
opts[-2] = opts[-2] + opts[-1]
|
309 |
-
opts = opts[:-1]
|
310 |
-
return "\n".join(opts)
|
311 |
-
|
312 |
-
|
313 |
-
def cut3(inp):
|
314 |
-
inp = inp.strip("\n")
|
315 |
-
return "\n".join(["%s。" % item for item in inp.strip("。").split("。")])
|
316 |
-
|
317 |
-
|
318 |
-
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
319 |
-
gr.Markdown(
|
320 |
-
value="本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
|
321 |
-
)
|
322 |
-
# with gr.Tabs():
|
323 |
-
# with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
324 |
-
with gr.Group():
|
325 |
-
gr.Markdown(value="*请上传并填写参考信息")
|
326 |
-
with gr.Row():
|
327 |
-
inp_ref = gr.Audio(label="请上传参考音频", type="filepath")
|
328 |
-
prompt_text = gr.Textbox(label="参考音频的文本", value="")
|
329 |
-
prompt_language = gr.Dropdown(
|
330 |
-
label="参考音频的语种", choices=["中文", "英文", "日文"], value="中文"
|
331 |
-
)
|
332 |
-
gr.Markdown(value="*请填写需要合成的目标文本")
|
333 |
-
with gr.Row():
|
334 |
-
text = gr.Textbox(label="需要合成的文本", value="")
|
335 |
-
text_language = gr.Dropdown(
|
336 |
-
label="需要合成的语种", choices=["中文", "英文", "日文"], value="中文"
|
337 |
-
)
|
338 |
-
inference_button = gr.Button("合成语音", variant="primary")
|
339 |
-
output = gr.Audio(label="输出的语音")
|
340 |
-
inference_button.click(
|
341 |
-
get_tts_wav,
|
342 |
-
[inp_ref, prompt_text, prompt_language, text, text_language],
|
343 |
-
[output],
|
344 |
-
)
|
345 |
-
|
346 |
-
gr.Markdown(value="文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")
|
347 |
-
with gr.Row():
|
348 |
-
text_inp = gr.Textbox(label="需要合成的切分前文本", value="")
|
349 |
-
button1 = gr.Button("凑五句一切", variant="primary")
|
350 |
-
button2 = gr.Button("凑50字一切", variant="primary")
|
351 |
-
button3 = gr.Button("按中文句号。切", variant="primary")
|
352 |
-
text_opt = gr.Textbox(label="切分后文本", value="")
|
353 |
-
button1.click(cut1, [text_inp], [text_opt])
|
354 |
-
button2.click(cut2, [text_inp], [text_opt])
|
355 |
-
button3.click(cut3, [text_inp], [text_opt])
|
356 |
-
gr.Markdown(value="后续将支持混合语种编码文本输入。")
|
357 |
-
|
358 |
-
app.queue(concurrency_count=511, max_size=1022).launch(
|
359 |
-
server_name="0.0.0.0",
|
360 |
-
inbrowser=True,
|
361 |
-
server_port=infer_ttswebui,
|
362 |
-
quiet=True,
|
363 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|