Spaces:
Sleeping
Sleeping
File size: 3,223 Bytes
bf0dde6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import os
inp_text = os.environ.get("inp_text")
exp_name = os.environ.get("exp_name")
i_part = os.environ.get("i_part")
all_parts = os.environ.get("all_parts")
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
opt_dir = os.environ.get("opt_dir")
pretrained_s2G = os.environ.get("pretrained_s2G")
s2config_path = os.environ.get("s2config_path")
is_half = eval(os.environ.get("is_half", "True"))
import math, traceback
import multiprocessing
import sys, pdb
now_dir = os.getcwd()
sys.path.append(now_dir)
from random import shuffle
import torch.multiprocessing as mp
from glob import glob
from tqdm import tqdm
import logging, librosa, utils, torch
from module.models import SynthesizerTrn
logging.getLogger("numba").setLevel(logging.WARNING)
# from config import pretrained_s2G
# inp_text=sys.argv[1]
# exp_name=sys.argv[2]
# i_part=sys.argv[3]
# all_parts=sys.argv[4]
# os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[5]
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
hubert_dir = "%s/4-cnhubert" % (opt_dir)
semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
if os.path.exists(semantic_path) == False:
os.makedirs(opt_dir, exist_ok=True)
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
hps = utils.get_hparams_from_file(s2config_path)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model
)
if is_half == True:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
# utils.load_checkpoint(utils.latest_checkpoint_path(hps.s2_ckpt_dir, "G_*.pth"), vq_model, None, True)
# utils.load_checkpoint(pretrained_s2G, vq_model, None, True)
print(
vq_model.load_state_dict(
torch.load(pretrained_s2G, map_location="cpu")["weight"], strict=False
)
)
def name2go(wav_name, lines):
hubert_path = "%s/%s.pt" % (hubert_dir, wav_name)
if os.path.exists(hubert_path) == False:
return
ssl_content = torch.load(hubert_path, map_location="cpu")
if is_half == True:
ssl_content = ssl_content.half().to(device)
else:
ssl_content = ssl_content.to(device)
codes = vq_model.extract_latent(ssl_content)
semantic = " ".join([str(i) for i in codes[0, 0, :].tolist()])
lines.append("%s\t%s" % (wav_name, semantic))
with open(inp_text, "r", encoding="utf8") as f:
lines = f.read().strip("\n").split("\n")
lines1 = []
for line in lines[int(i_part) :: int(all_parts)]:
# print(line)
try:
# wav_name,text=line.split("\t")
wav_name, spk_name, language, text = line.split("|")
wav_name = os.path.basename(wav_name)
# name2go(name,lines1)
name2go(wav_name, lines1)
except:
print(line, traceback.format_exc())
with open(semantic_path, "w", encoding="utf8") as f:
f.write("\n".join(lines1))
|