XzJosh commited on
Commit
0554a33
·
verified ·
1 Parent(s): f643c3e

Delete prepare_datasets

Browse files
prepare_datasets/0-pipeline.py DELETED
@@ -1,81 +0,0 @@
1
- import os, torch, sys
2
- from subprocess import Popen
3
-
4
- now_dir = os.getcwd()
5
- sys.path.append(now_dir)
6
- from config import (
7
- text_path,
8
- wav_dir,
9
- n_card,
10
- exp_name,
11
- n_parts,
12
- exp_dir,
13
- )
14
-
15
- os.makedirs("%s/logs_s1" % exp_dir, exist_ok=True)
16
- os.makedirs("%s/logs_s2" % exp_dir, exist_ok=True)
17
- ##############step1
18
- ps = []
19
- for i_part in range(n_parts):
20
- cmd = "python prepare/1-get-text.py %s %s %s %s %s %s" % (
21
- text_path,
22
- wav_dir,
23
- exp_name,
24
- i_part,
25
- n_parts,
26
- i_part % n_card,
27
- )
28
- print(cmd)
29
- p = Popen(cmd, shell=True)
30
- ps.append(p)
31
- for p in ps:
32
- p.wait()
33
-
34
- opt = []
35
- for i_part in range(n_parts):
36
- txt_path = "%s/2-name2text-%s.txt" % (exp_dir, i_part)
37
- with open(txt_path, "r") as f:
38
- opt += f.read().strip("\n").split("\n")
39
- os.remove(txt_path)
40
- with open("%s/2-name2text.txt" % exp_dir, "w") as f:
41
- f.write("\n".join(opt) + "\n")
42
-
43
- ############step2
44
- ps = []
45
- for i_part in range(n_parts):
46
- cmd = "python prepare/2-get-hubert-wav32k.py %s %s %s %s %s %s" % (
47
- text_path,
48
- wav_dir,
49
- exp_name,
50
- i_part,
51
- n_parts,
52
- i_part % n_card,
53
- )
54
- print(cmd)
55
- p = Popen(cmd, shell=True)
56
- ps.append(p)
57
- for p in ps:
58
- p.wait()
59
- #############step3
60
- ps = []
61
- for i_part in range(n_parts):
62
- cmd = "python prepare/3-get-semantic.py %s %s %s %s %s" % (
63
- text_path,
64
- exp_name,
65
- i_part,
66
- n_parts,
67
- i_part % n_card,
68
- )
69
- print(cmd)
70
- p = Popen(cmd, shell=True)
71
- ps.append(p)
72
- for p in ps:
73
- p.wait()
74
- opt = ["item_name semantic_audio"]
75
- for i_part in range(n_parts):
76
- semantic_path = "%s/6-name2semantic-%s.tsv" % (exp_dir, i_part)
77
- with open(semantic_path, "r") as f:
78
- opt += f.read().strip("\n").split("\n")
79
- os.remove(semantic_path)
80
- with open("%s/6-name2semantic.tsv" % exp_dir, "w") as f:
81
- f.write("\n".join(opt) + "\n")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
prepare_datasets/1-get-text.py DELETED
@@ -1,125 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- import os
4
-
5
- inp_text = os.environ.get("inp_text")
6
- inp_wav_dir = os.environ.get("inp_wav_dir")
7
- exp_name = os.environ.get("exp_name")
8
- i_part = os.environ.get("i_part")
9
- all_parts = os.environ.get("all_parts")
10
- os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
11
- opt_dir = os.environ.get("opt_dir")
12
- bert_pretrained_dir = os.environ.get("bert_pretrained_dir")
13
- is_half = eval(os.environ.get("is_half", "True"))
14
- import sys, numpy as np, traceback, pdb
15
- import os.path
16
- from glob import glob
17
- from tqdm import tqdm
18
- from text.cleaner import clean_text
19
- import torch
20
- from transformers import AutoModelForMaskedLM, AutoTokenizer
21
- import numpy as np
22
-
23
- # inp_text=sys.argv[1]
24
- # inp_wav_dir=sys.argv[2]
25
- # exp_name=sys.argv[3]
26
- # i_part=sys.argv[4]
27
- # all_parts=sys.argv[5]
28
- # os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6]#i_gpu
29
- # opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
30
- # bert_pretrained_dir="/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large"
31
-
32
- from time import time as ttime
33
- import shutil
34
-
35
-
36
- def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path
37
- dir = os.path.dirname(path)
38
- name = os.path.basename(path)
39
- tmp_path = "%s/%s%s.pth" % (dir, ttime(), i_part)
40
- torch.save(fea, tmp_path)
41
- shutil.move(tmp_path, "%s/%s" % (dir, name))
42
-
43
-
44
- txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
45
- if os.path.exists(txt_path) == False:
46
- bert_dir = "%s/3-bert" % (opt_dir)
47
- os.makedirs(opt_dir, exist_ok=True)
48
- os.makedirs(bert_dir, exist_ok=True)
49
- device = "cuda:0"
50
- tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
51
- bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
52
- if is_half == True:
53
- bert_model = bert_model.half().to(device)
54
- else:
55
- bert_model = bert_model.to(device)
56
-
57
- def get_bert_feature(text, word2ph):
58
- with torch.no_grad():
59
- inputs = tokenizer(text, return_tensors="pt")
60
- for i in inputs:
61
- inputs[i] = inputs[i].to(device)
62
- res = bert_model(**inputs, output_hidden_states=True)
63
- res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
64
-
65
- assert len(word2ph) == len(text)
66
- phone_level_feature = []
67
- for i in range(len(word2ph)):
68
- repeat_feature = res[i].repeat(word2ph[i], 1)
69
- phone_level_feature.append(repeat_feature)
70
-
71
- phone_level_feature = torch.cat(phone_level_feature, dim=0)
72
-
73
- return phone_level_feature.T
74
-
75
- def process(data, res):
76
- for name, text, lan in data:
77
- try:
78
- name = os.path.basename(name)
79
- phones, word2ph, norm_text = clean_text(
80
- text.replace("%", "-").replace("¥", ","), lan
81
- )
82
- path_bert = "%s/%s.pt" % (bert_dir, name)
83
- if os.path.exists(path_bert) == False and lan == "zh":
84
- bert_feature = get_bert_feature(norm_text, word2ph)
85
- assert bert_feature.shape[-1] == len(phones)
86
- # torch.save(bert_feature, path_bert)
87
- my_save(bert_feature, path_bert)
88
- phones = " ".join(phones)
89
- # res.append([name,phones])
90
- res.append([name, phones, word2ph, norm_text])
91
- except:
92
- print(name, text, traceback.format_exc())
93
-
94
- todo = []
95
- res = []
96
- with open(inp_text, "r", encoding="utf8") as f:
97
- lines = f.read().strip("\n").split("\n")
98
-
99
- language_v1_to_language_v2 = {
100
- "ZH": "zh",
101
- "zh": "zh",
102
- "JP": "ja",
103
- "jp": "ja",
104
- "JA": "ja",
105
- "ja": "ja",
106
- "EN": "en",
107
- "en": "en",
108
- "En": "en",
109
- }
110
- for line in lines[int(i_part) :: int(all_parts)]:
111
- try:
112
- wav_name, spk_name, language, text = line.split("|")
113
- # todo.append([name,text,"zh"])
114
- todo.append(
115
- [wav_name, text, language_v1_to_language_v2.get(language, language)]
116
- )
117
- except:
118
- print(line, traceback.format_exc())
119
-
120
- process(todo, res)
121
- opt = []
122
- for name, phones, word2ph, norm_text in res:
123
- opt.append("%s\t%s\t%s\t%s" % (name, phones, word2ph, norm_text))
124
- with open(txt_path, "w", encoding="utf8") as f:
125
- f.write("\n".join(opt) + "\n")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
prepare_datasets/2-get-hubert-wav32k.py DELETED
@@ -1,94 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- import sys,os
4
- inp_text= os.environ.get("inp_text")
5
- inp_wav_dir= os.environ.get("inp_wav_dir")
6
- exp_name= os.environ.get("exp_name")
7
- i_part= os.environ.get("i_part")
8
- all_parts= os.environ.get("all_parts")
9
- os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
10
- from feature_extractor import cnhubert
11
- opt_dir= os.environ.get("opt_dir")
12
- cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir")
13
- is_half=eval(os.environ.get("is_half","True"))
14
-
15
- import pdb,traceback,numpy as np,logging
16
- from scipy.io import wavfile
17
- import librosa,torch
18
- now_dir = os.getcwd()
19
- sys.path.append(now_dir)
20
- from my_utils import load_audio
21
-
22
- # from config import cnhubert_base_path
23
- # cnhubert.cnhubert_base_path=cnhubert_base_path
24
- # inp_text=sys.argv[1]
25
- # inp_wav_dir=sys.argv[2]
26
- # exp_name=sys.argv[3]
27
- # i_part=sys.argv[4]
28
- # all_parts=sys.argv[5]
29
- # os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6]
30
- # cnhubert.cnhubert_base_path=sys.argv[7]
31
- # opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
32
-
33
- from time import time as ttime
34
- import shutil
35
- def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
36
- dir=os.path.dirname(path)
37
- name=os.path.basename(path)
38
- tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
39
- torch.save(fea,tmp_path)
40
- shutil.move(tmp_path,"%s/%s"%(dir,name))
41
-
42
- hubert_dir="%s/4-cnhubert"%(opt_dir)
43
- wav32dir="%s/5-wav32k"%(opt_dir)
44
- os.makedirs(opt_dir,exist_ok=True)
45
- os.makedirs(hubert_dir,exist_ok=True)
46
- os.makedirs(wav32dir,exist_ok=True)
47
-
48
- maxx=0.95
49
- alpha=0.5
50
- device="cuda:0"
51
- model=cnhubert.get_model()
52
- if(is_half==True):
53
- model=model.half().to(device)
54
- else:
55
- model = model.to(device)
56
- def name2go(wav_name):
57
- hubert_path="%s/%s.pt"%(hubert_dir,wav_name)
58
- if(os.path.exists(hubert_path)):return
59
- wav_path="%s/%s"%(inp_wav_dir,wav_name)
60
- tmp_audio = load_audio(wav_path, 32000)
61
- tmp_max = np.abs(tmp_audio).max()
62
- if tmp_max > 2.2:
63
- print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
64
- return
65
- tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio
66
- tmp_audio = librosa.resample(
67
- tmp_audio32, orig_sr=32000, target_sr=16000
68
- )
69
- tensor_wav16 = torch.from_numpy(tmp_audio)
70
- if (is_half == True):
71
- tensor_wav16=tensor_wav16.half().to(device)
72
- else:
73
- tensor_wav16 = tensor_wav16.to(device)
74
- ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
75
- if np.isnan(ssl.detach().numpy()).sum()!= 0:return
76
- wavfile.write(
77
- "%s/%s"%(wav32dir,wav_name),
78
- 32000,
79
- tmp_audio32.astype("int16"),
80
- )
81
- # torch.save(ssl,hubert_path )
82
- my_save(ssl,hubert_path )
83
-
84
- with open(inp_text,"r",encoding="utf8")as f:
85
- lines=f.read().strip("\n").split("\n")
86
-
87
- for line in lines[int(i_part)::int(all_parts)]:
88
- try:
89
- # wav_name,text=line.split("\t")
90
- wav_name, spk_name, language, text = line.split("|")
91
- wav_name=os.path.basename(wav_name)
92
- name2go(wav_name)
93
- except:
94
- print(line,traceback.format_exc())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
prepare_datasets/3-get-semantic.py DELETED
@@ -1,90 +0,0 @@
1
- import os
2
-
3
- inp_text = os.environ.get("inp_text")
4
- exp_name = os.environ.get("exp_name")
5
- i_part = os.environ.get("i_part")
6
- all_parts = os.environ.get("all_parts")
7
- os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
8
- opt_dir = os.environ.get("opt_dir")
9
- pretrained_s2G = os.environ.get("pretrained_s2G")
10
- s2config_path = os.environ.get("s2config_path")
11
- is_half = eval(os.environ.get("is_half", "True"))
12
- import math, traceback
13
- import multiprocessing
14
- import sys, pdb
15
-
16
- now_dir = os.getcwd()
17
- sys.path.append(now_dir)
18
- from random import shuffle
19
- import torch.multiprocessing as mp
20
- from glob import glob
21
- from tqdm import tqdm
22
- import logging, librosa, utils, torch
23
- from module.models import SynthesizerTrn
24
-
25
- logging.getLogger("numba").setLevel(logging.WARNING)
26
- # from config import pretrained_s2G
27
-
28
- # inp_text=sys.argv[1]
29
- # exp_name=sys.argv[2]
30
- # i_part=sys.argv[3]
31
- # all_parts=sys.argv[4]
32
- # os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[5]
33
- # opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
34
-
35
-
36
- hubert_dir = "%s/4-cnhubert" % (opt_dir)
37
- semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
38
- if os.path.exists(semantic_path) == False:
39
- os.makedirs(opt_dir, exist_ok=True)
40
-
41
- device = "cuda:0"
42
- hps = utils.get_hparams_from_file(s2config_path)
43
- vq_model = SynthesizerTrn(
44
- hps.data.filter_length // 2 + 1,
45
- hps.train.segment_size // hps.data.hop_length,
46
- n_speakers=hps.data.n_speakers,
47
- **hps.model
48
- )
49
- if is_half == True:
50
- vq_model = vq_model.half().to(device)
51
- else:
52
- vq_model = vq_model.to(device)
53
- vq_model.eval()
54
- # utils.load_checkpoint(utils.latest_checkpoint_path(hps.s2_ckpt_dir, "G_*.pth"), vq_model, None, True)
55
- # utils.load_checkpoint(pretrained_s2G, vq_model, None, True)
56
- print(
57
- vq_model.load_state_dict(
58
- torch.load(pretrained_s2G, map_location="cpu")["weight"], strict=False
59
- )
60
- )
61
-
62
- def name2go(wav_name, lines):
63
- hubert_path = "%s/%s.pt" % (hubert_dir, wav_name)
64
- if os.path.exists(hubert_path) == False:
65
- return
66
- ssl_content = torch.load(hubert_path, map_location="cpu")
67
- if is_half == True:
68
- ssl_content = ssl_content.half().to(device)
69
- else:
70
- ssl_content = ssl_content.to(device)
71
- codes = vq_model.extract_latent(ssl_content)
72
- semantic = " ".join([str(i) for i in codes[0, 0, :].tolist()])
73
- lines.append("%s\t%s" % (wav_name, semantic))
74
-
75
- with open(inp_text, "r", encoding="utf8") as f:
76
- lines = f.read().strip("\n").split("\n")
77
-
78
- lines1 = []
79
- for line in lines[int(i_part) :: int(all_parts)]:
80
- # print(line)
81
- try:
82
- # wav_name,text=line.split("\t")
83
- wav_name, spk_name, language, text = line.split("|")
84
- wav_name = os.path.basename(wav_name)
85
- # name2go(name,lines1)
86
- name2go(wav_name, lines1)
87
- except:
88
- print(line, traceback.format_exc())
89
- with open(semantic_path, "w", encoding="utf8") as f:
90
- f.write("\n".join(lines1))