Spaces:
Sleeping
Sleeping
import json | |
import os | |
import pandas as pd | |
import src.display.formatting as formatting | |
import src.display.utils as utils | |
import src.leaderboard.read_evals as read_evals | |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
print(results_path, requests_path) | |
raw_data = read_evals.get_raw_eval_results(results_path, requests_path) | |
print("raw_data:",raw_data) | |
all_data_json = [v.to_dict() for v in raw_data] | |
print(all_data_json) | |
df = pd.DataFrame.from_records(all_data_json) | |
print(df) | |
# exit() | |
df = df.sort_values(by=[utils.AutoEvalColumn.hallucination_rate.name], ascending=True) | |
df = df[cols].round(decimals=2) | |
# filter out if any of the benchmarks have not been produced | |
df = df[formatting.has_no_nan_values(df, benchmark_cols)] | |
return raw_data, df | |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
all_evals = [] | |
for entry in entries: | |
if ".json" in entry: | |
file_path = os.path.join(save_path, entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[utils.EvalQueueColumn.model.name] = data["model"] #formatting.make_clickable_model(data["model"]) | |
data[utils.EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
elif ".md" not in entry: | |
# this is a folder | |
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] | |
for sub_entry in sub_entries: | |
file_path = os.path.join(save_path, entry, sub_entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[utils.EvalQueueColumn.model.name] = formatting.make_clickable_model(data["model"]) | |
data[utils.EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
return df_finished[cols], df_running[cols], df_pending[cols] | |