Spaces:
Sleeping
Sleeping
File size: 55,113 Bytes
63a1401 9da8cd9 63a1401 9da8cd9 63a1401 9da8cd9 63a1401 e1b4714 63a1401 e1b4714 63a1401 9da8cd9 63a1401 e1b4714 63a1401 9da8cd9 63a1401 9da8cd9 63a1401 9da8cd9 63a1401 e1b4714 9da8cd9 63a1401 9da8cd9 63a1401 e1b4714 63a1401 e1b4714 63a1401 e1b4714 63a1401 9da8cd9 63a1401 9da8cd9 63a1401 9da8cd9 63a1401 9da8cd9 63a1401 9da8cd9 63a1401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 |
import os
import time
from datetime import datetime
import logging
from pathlib import Path
import requests
import json
import numpy as np
import pandas as pd
import spacy
from sentence_transformers import CrossEncoder
import litellm
# from litellm import completion
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig, pipeline
# from accelerate import PartialState
# from accelerate.inference import prepare_pippy
import torch
import cohere
from openai import OpenAI
# import google
import google.generativeai as genai
import src.backend.util as util
import src.envs as envs
# import pandas as pd
import scipy
from scipy.spatial.distance import jensenshannon
# import numpy as np
# litellm.set_verbose=False
litellm.set_verbose=True
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
# Load spacy model for word tokenization
nlp = spacy.load("en_core_web_sm")
nlp1 = spacy.load("en_core_web_trf")
os.environ["HUGGINGFACE_API_KEY"] = envs.TOKEN
def load_evaluation_model(model_path):
"""Load the evaluation model from the given path
Args:
model_path (str): Path to the evaluation model
Returns:
CrossEncoder: The evaluation model
"""
# model = CrossEncoder(model_path)
model = ""
return model
class ModelLoadingException(Exception):
"""Exception raised for errors in loading a model.
Attributes:
model_id (str): The model identifier.
revision (str): The model revision.
"""
def __init__(self, model_id, revision, messages="Error initializing model"):
self.model_id = model_id
self.revision = revision
super().__init__(f"{messages} id={model_id} revision={revision}")
class SummaryGenerator:
"""A class to generate summaries using a causal language model.
Attributes:
model (str): huggingface/{model_id}
api_base (str): https://api-inference.huggingface.co/models/{model_id}
summaries_df (DataFrame): DataFrame to store generated summaries.
revision (str): Model revision.
avg_length (float): Average length of summaries.
answer_rate (float): Rate of non-empty summaries.
"""
def __init__(self, model_id, revision):
"""
Initializes the SummaryGenerator with a model.
Args:
model_id (str): Identifier for the model.
revision (str): Revision of the model.
"""
self.model_id = model_id
self.model = f"huggingface/{model_id}"
self.api_base = f"https://api-inference.huggingface.co/models/{model_id}"
self.summaries_df = pd.DataFrame()
self.revision = revision
self.avg_length = None
self.answer_rate = None
self.exceptions = None
self.local_model = None
def generate_summaries(self, dataset, df_prompt, save_path=None):
"""Generate summaries for a given DataFrame of source docs.
修改这里拉取模型生成结果
Args:
df (DataFrame): DataFrame containing source docs.
Returns:
summaries_df (DataFrame): Generated summaries by the model.
"""
exceptions = []
if (save_path is not None) and os.path.exists(save_path):
'''已存在文件,可以读取已经存在的测试文本'''
self.summaries_df = pd.read_csv(save_path)
# print(self.summaries_df['Experiment'])
print(f'Loaded generated summaries from {save_path}')
else:
'''测试文件不存在,则需要调用指定的模型来进行测试'''
# prompt = {}
# for index, row in tqdm(df_prompt.iterrows(), total=df_prompt.shape[0]):
# prompt['E' + row['Item']] = row['Prompt']
xls = pd.ExcelFile(dataset)
sheet_names = xls.sheet_names
# sheet_names = df.sheetnames
print(f"Total: {len(sheet_names)}")
print(sheet_names)
Experiment_ID, Questions_ID, Item_ID, Condition, User_prompt, Response, Factor_2, Stimuli_1 = [], [], [], [], [] ,[], [], []
for i, sheet_name in enumerate(sheet_names, start=1):
# 读取每个工作表
# if i > 2 and i ==1:
# continue
print(i, sheet_name)
df_sheet = pd.read_excel(xls, sheet_name=sheet_name)
# 假设第一列是'Prompt0',但这里我们使用列名来避免硬编码
if 'Prompt0' in df_sheet.columns:
prompt_column = df_sheet['Prompt0']
else:
# 如果'Prompt0'列不存在,则跳过该工作表或进行其他处理
continue
if i == 3 :
word1_list = df_sheet['Stimuli-2']
word2_list = df_sheet['Stimuli-3']
V2_column = []
for jj in range(len(word1_list)):
V2_column.append(word1_list[jj] + '_' + word2_list[jj])
# print(V2_column)
elif i == 9:
V2_column = df_sheet['V2'] #SL, LS
elif i == 4 or i == 6 :
V2_column = df_sheet['Stimuli-2'] #Stimuli-2
else:
V2_column = [""] * len(prompt_column)
q_column = df_sheet["ID"]
Item_column = df_sheet["Item"]
Condition_column = df_sheet["Condition"]
Stimuli_1_column = df_sheet["Stimuli-1"]
if 'Stimuli-2' in df_sheet.columns:
Stimuli_2_column = df_sheet["Stimuli-2"]
# 遍历Prompt0列的值
for j, prompt_value in enumerate(tqdm(prompt_column[0:2], desc=f"Processing {sheet_name}"), start=0):
ID = 'E' + str(i)
# q_ID = ID + '_' + str(j)
# print(ID, q_ID, prompt_value)
system_prompt = envs.SYSTEM_PROMPT
_user_prompt = prompt_value
for ii in range(2):
# user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
while True:
try:
'''调用'''
print('开始调用LLM-API')
_response = self.generate_summary(system_prompt, _user_prompt)
# print(f"Finish index {index}")
break
except Exception as e:
if 'Rate limit reached' in str(e):
wait_time = 3660
current_time = datetime.now().strftime('%H:%M:%S')
print(f"Rate limit hit at {current_time}. Waiting for 1 hour before retrying...")
time.sleep(wait_time)
elif 'is currently loading' in str(e):
wait_time = 200
print(f"Model is loading, wait for {wait_time}")
time.sleep(wait_time)
elif '429 Resource has been exhausted' in str(e): # for gemini models
wait_time = 60
print(f"Quota has reached, wait for {wait_time}")
time.sleep(wait_time)
else:
print(f"Error at index {i}: {e}")
_response = ""
exceptions.append(i)
break
if i == 5:
print(_response)
if _response == None:
_response1, _response2 = "", ""
else:
try:
import re
_response1,_response2 = re.split(r'\n\s*\n', _response.strip())
except:
_response1 = _response.split('\n\n')
if len(_response) == 2:
_response1, _response2 = _response[0], _response[1]
else:
_response1, _response2 = _response[0], ""
Experiment_ID.append(ID)
Questions_ID.append(q_column[j])
User_prompt.append(_user_prompt)
Response.append(_response2)
Factor_2.append(V2_column[j])
Stimuli_1.append(Stimuli_2_column[j])
Item_ID.append(Item_column[j])
Condition.append(Condition_column[j])
# the first sentence in the response is saved as E51
Experiment_ID.append(ID + '1')
Questions_ID.append(str(q_column[j]) + '1')
User_prompt.append(_user_prompt)
Response.append(_response1)
Factor_2.append(V2_column[j])
Stimuli_1.append(Stimuli_1_column[j])
Item_ID.append(Item_column[j])
Condition.append(Condition_column[j])
else:
Experiment_ID.append(ID)
Questions_ID.append(q_column[j])
User_prompt.append(_user_prompt)
Response.append(_response)
if i == 6:
Factor_2.append(Condition_column[j])
Stimuli_1.append(V2_column[j])
else:
Factor_2.append(V2_column[j])
Stimuli_1.append(Stimuli_1_column[j])
Item_ID.append(Item_column[j])
Condition.append(Condition_column[j])
print(_response)
# exit()
# Sleep to prevent hitting rate limits too frequently
time.sleep(1)
self.summaries_df = pd.DataFrame(list(zip(Experiment_ID, Questions_ID, Item_ID, Condition, User_prompt, Response, Factor_2, Stimuli_1)),
columns=["Experiment", "Question_ID", "Item", "Condition", "User_prompt", "Response","Factor 2","Stimuli 1"])
if save_path is not None:
print(f'Save summaries to {save_path}')
fpath = Path(save_path)
fpath.parent.mkdir(parents=True, exist_ok=True)
self.summaries_df.to_csv(fpath)
self.exceptions = exceptions
# self._compute_avg_length()
# self._compute_answer_rate()
return self.summaries_df
def generate_summary(self, system_prompt: str, user_prompt: str):
# Using Together AI API
using_together_api = False
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm']
for together_ai_api_model in together_ai_api_models:
if together_ai_api_model in self.model_id.lower():
using_together_api = True
break
# print('适用哪一种LLM',together_ai_api_model , using_together_api)
# print(self.model_id.lower()) #meta-llama/llama-2-7b-chat-hf
# print('local',self.local_model) $None
# exit()
# if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
if using_together_api:
# suffix = "completions" if ('mixtral' in self.model_id.lower() or 'base' in self.model_id.lower()) else "chat/completions"
suffix = "chat/completions"
url = f"https://api.together.xyz/v1/{suffix}"
payload = {
"model": self.model_id,
# "max_tokens": 4096,
'max_new_tokens': 50,
# "temperature": 0.0,
# 'repetition_penalty': 1.1 if 'mixtral' in self.model_id.lower() else 1
}
# if 'mixtral' in self.model_id.lower():
# # payload['prompt'] = user_prompt
# # payload['prompt'] = "Write a summary of the following passage:\nPassage:\n" + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:'
# payload['prompt'] = 'You must stick to the passage provided. Provide a concise summary of the following passage, covering the core pieces of information described:\nPassage:\n' + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:'
# print(payload)
# else:
# payload['messages'] = [{"role": "system", "content": system_prompt},
# {"role": "user", "content": user_prompt}]
payload['messages'] = [{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}]
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}"
}
response = requests.post(url, json=payload, headers=headers)
try:
result = json.loads(response.text)
# print(result)
result = result["choices"][0]
if 'message' in result:
result = result["message"]["content"].strip()
else:
result = result["text"]
result_candidates = [result_cancdidate for result_cancdidate in result.split('\n\n') if len(result_cancdidate) > 0]
result = result_candidates[0]
print(result)
except:
print(response)
result = ''
print(result)
return result
# Using OpenAI API
elif 'gpt' in self.model_id.lower():
response = litellm.completion(
model=self.model_id.replace('openai/',''),
messages=[{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}],
# temperature=0.0,
max_tokens=50,
)
result = response['choices'][0]['message']['content']
# print()
print(result)
return result
# Using Google AI API for Gemini models
elif 'gemini' in self.model_id.lower():
genai.configure(api_key=os.getenv('GOOGLE_AI_API_KEY'))
generation_config = {
"temperature": 0,
"top_p": 0.95, # cannot change
"top_k": 0,
"max_output_tokens": 50,
# "response_mime_type": "application/json",
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
},
]
model = genai.GenerativeModel(model_name="gemini-1.5-pro-latest" if "gemini-1.5-pro" in self.model_id.lower() else self.model_id.lower().split('google/')[-1],
generation_config=generation_config,
system_instruction=system_prompt,
safety_settings=safety_settings)
convo = model.start_chat(history=[])
convo.send_message(user_prompt)
# print(convo.last)
result = convo.last.text
print(result)
return result
# Using HF API or download checkpoints
elif self.local_model is None:
# print(self.model_id)
# print(self.api_base)
# mistralai/Mistral-7B-Instruct-v0.1
# https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.1
try: # try use HuggingFace API
# response = litellm.completion(
# model="huggingface/"+'command-r-plus' if 'command' in self.model_id else self.model_id,
# messages=[{"role": "system", "content": system_prompt},
# {"role": "user", "content": user_prompt}],
# temperature=0.0,
# max_tokens=1024,
# api_base= "https://api-inference.huggingface.co/models/" + self.model_id,
# )
self.model_id = 'command-r-plus' if 'command' in self.model_id else self.model_id
response = litellm.completion(
model="huggingface/" + self.model_id,
# mistralai/Mistral-7B-Instruct-v0.1",
messages=[{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}],
#temperature=0.0,
max_tokens=1024,
api_base="https://api-inference.huggingface.co/models/" + self.model_id)
print("模型返回结果",response)
print("模型返回结果结束")
# exit()
result = response['choices'][0]['message']['content']
print(result)
return result
# exit()
except: # fail to call api. run it locally.
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=True)
print("Tokenizer loaded")
self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True, device_map="auto", torch_dtype="auto", cache_dir='/home/paperspace/cache')
print("Local model loaded")
# exit()
# Using local model
if self.local_model: # cannot call API. using local model
messages=[
{"role": "system", "content": system_prompt}, # gemma-1.1 does not accept system role
{"role": "user", "content": user_prompt}
]
try: # some models support pipeline
pipe = pipeline(
"text-generation",
model=self.local_model,
tokenizer=self.tokenizer,
)
generation_args = {
"max_new_tokens": 50,
"return_full_text": False,
#"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
result = output[0]['generated_text']
print(result)
except:
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
print(prompt)
input_ids = self.tokenizer(prompt, return_tensors="pt").to('cuda')
with torch.no_grad():
outputs = self.local_model.generate(**input_ids, max_new_tokens=50, do_sample=True, pad_token_id=self.tokenizer.eos_token_id)
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
result = result.replace(prompt[0], '')
print(result)
return result
def _compute_avg_length(self):
"""
Compute the average length of non-empty summaries using SpaCy.
"""
total_word_count = 0
total_count = 0
for summary in self.summaries_df['summary']:
if util.is_summary_valid(summary):
doc = nlp(summary)
words = [token.text for token in doc if token.is_alpha]
total_word_count += len(words)
total_count += 1
self.avg_length = 0 if total_count == 0 else total_word_count / total_count
def _compute_answer_rate(self):
"""
Compute the rate of non-empty summaries.
"""
valid_count = sum(1 for summary in self.summaries_df['summary']
if util.is_summary_valid(summary))
total_count = len(self.summaries_df)
self.answer_rate = 0 if total_count == 0 else valid_count / total_count
class EvaluationModel:
"""A class to evaluate generated summaries.
Attributes:
model (CrossEncoder): The evaluation model.
scores (list): List of evaluation scores.
accuracy (float): Accuracy of the summaries.
hallucination_rate (float): Rate of hallucination in summaries.
"""
def __init__(self, model_path):
"""
Initializes the EvaluationModel with a CrossEncoder model.
Args:
model_path (str): Path to the CrossEncoder model.
"""
self.model = load_evaluation_model(model_path)
self.scores = []
self.factual_consistency_rate = None
self.hallucination_rate = None
self.humanlike_score = None
def code_results(self, summaries_df):
'''code results from LLM's response'''
output = []
'''database for Exp4'''
item4 = pd.read_csv(envs.ITEM_4_DATA)
wordpair2code = {}
for j in range(len(item4['Coding'])):
wordpair2code[item4['Pair'][j]] = item4['Coding'][j]
'''verb for Exp5'''
item5 = pd.read_csv(envs.ITEM_5_DATA)
# item corresponding to verb, same item id corresponding to verb pair
item2verb2 = {}
item2verb1 = {}
Stimuli1, Stimuli2 = {}, {}
for j in range(len(item5['Item'])):
item2verb1[item5['Item'][j]] = item5['Verb1'][j]
item2verb2[item5['Item'][j]] = item5['Verb2'][j]
Stimuli1[item5['ID'][j]] = item5['Stimuli-1'][j]
Stimuli2[item5['ID'][j]] = item5['Stimuli-2'][j]
male_keyword = ["he", "his", "himself"]
female_keyword = ["she", "her", "herself"]
print(len(summaries_df["Experiment"]))
for i in range(len(summaries_df["Experiment"])):
# vote_1_1, vote_1_2, vote_1_3 = 0, 0, 0
# print()
if pd.isna(summaries_df["Response"][i]):
output.append("Other")
continue
rs = summaries_df["Response"][i].strip().lower()
'''Exp1'''
if summaries_df["Experiment"][i] == "E1":
print("E1", rs)
rs = rs.replace('"','')
if rs == "round":
# vote_1_1 += 1
output.append("Round")
elif rs == "spiky":
output.append("Spiky")
else:
output.append("Other")
'''Exp2'''
elif summaries_df["Experiment"][i] == "E2":
# rs = summaries_df["Response"][i].strip()
rs = rs.split(' ')
print("E2", rs)
male, female = 0, 0
for word in rs:
if word in female_keyword and male == 0:
female = 1
output.append("Female")
break
if word in male_keyword and female == 0:
male = 1
output.append("Male")
break
if male == 0 and female == 0 :
output.append("Other")
'''Exp3'''
elif summaries_df["Experiment"][i] == "E3":
# rs = summaries_df["Response"][i].strip()
print("E3", rs)
if pd.isna(summaries_df["Factor 2"][i]):
output.append("Other")
else:
if summaries_df["Factor 2"][i].strip() == "LS":
if "2" in rs:
output.append("Long")
elif "3" in rs:
output.append("Short")
else:
output.append("Other")
if summaries_df["Factor 2"][i].strip() == "SL":
if "2" in rs:
output.append("Short")
elif "3" in rs:
output.append("Long")
else:
output.append("Other")
'''Exp4'''
elif summaries_df["Experiment"][i] == "E4":
# rs = summaries_df["Response"][i].strip()
target = summaries_df["Factor 2"][i].strip().lower()
pair = target + "_" + rs
print("E4:", pair)
if pair in wordpair2code.keys():
output.append(wordpair2code[pair])
else:
output.append("Other")
'''Exp5'''
elif summaries_df["Experiment"][i] == "E5" or summaries_df["Experiment"][i] == "E51":
# sentence = summaries_df["Response"][i].strip()
item_id = summaries_df["Item"][i]
question_id = summaries_df["Question_ID"][i]
sti1, sti2 = "", ""
if summaries_df["Experiment"][i] == "E51":
sti1 = Stimuli1[question_id[0:-1]].lower().replace("...", "")
sti2 = Stimuli2[question_id[0:-1]].lower().replace("...", "")
verb = item2verb1[item_id].lower()
sentence = sti1 + " " + rs.replace(sti1, "")
print("E5", verb, sentence)
if summaries_df["Experiment"][i] == "E5":
sti1 = Stimuli1[question_id].lower().replace("...", "")
# print(sti1)
sti2 = Stimuli2[question_id].lower().replace("...", "")
verb = item2verb2[item_id].lower()
sentence = sti2.replace("...","") + " " + rs.replace(sti2, "")
print("E5", verb, sentence)
doc = nlp1(sentence.replace(" "," "))
# print(doc)
# print()
verb_token = None
for token in doc:
# print(token.lemma_)
if token.lemma_ == verb:
verb_token = token
break
# exit()
if verb_token is None:
output.append("Other")
print("E5 The target verb is missing from the sentence.")
else:
pobj, dative = None, None
# print(verb_token.children)
# exit()
for child in verb_token.children:
print(child)
if (child.dep_ == 'dative' and child.pos_ == "ADP") or (child.text == "to" and child.dep_ == 'prep' and child.pos_ == "ADP"):
pobj = child.text
if child.dep_ == 'dative':
dative = child.text
print("E5", pobj, dative)
# exit()
if pobj:
output.append("PO")
elif dative:
output.append("DO")
else:
print("Other", sentence, pobj, dative)
# exit()
output.append("Other")
'''Exp6'''
elif summaries_df["Experiment"][i] == "E6":
sentence = summaries_df["Stimuli 1"][i].strip().lower()
print("E6", sentence)
doc = nlp1(sentence)
subject = "None"
obj = "None"
# 遍历依存关系,寻找主语和宾语
for token in doc:
if token.dep_ == "nsubj":
subject = token.text
elif token.dep_ == "dobj":
obj = token.text
print("E6", subject, obj)
if subject in rs and obj in rs:
print(rs, subject, obj, "Other")
output.append("Other")
elif subject in rs:
print(rs, subject, obj, "VP")
output.append("VP")
elif obj in rs:
print(rs, subject, obj, "NP")
output.append("NP")
else:
print(rs, subject, obj, "Other")
output.append("Other")
'''Exp7'''
elif summaries_df["Experiment"][i] == "E7":
# rs = summaries_df["Response"][i].strip().lower()
print("E7",rs)
if rs == "no":
output.append("0")
elif rs == "yes":
output.append("1")
else:
output.append("Other")
'''Exp8'''
elif summaries_df["Experiment"][i] == "E8":
# rs = summaries_df["Response"][i].strip()
if "something is wrong with the question" in rs:
output.append("1")
else:
output.append("0")
'''Exp9'''
elif summaries_df["Experiment"][i] == "E9":
male, female = 0, 0
# rs = summaries_df["Response"][i].strip()
if "because" in rs:
rs = rs.replace("because because","because").split("because")[1]
else:
rs = rs
condition = summaries_df["Factor 2"][i].strip()
rs = rs.split(" ")
for w in rs:
if w in male_keyword and female != 1:
male = 1
break
if w in female_keyword and male != 1:
female = 1
break
print("E9", "condition", condition, "male", male, "female", female)
if male == 0 and female == 0:
output.append('Other')
else:
if male == 1 and female==0:
if condition == "MF":
output.append("Subject")
elif condition == "FM":
output.append("Object")
else:
output.append("Other")
elif female == 1 and male ==0:
if condition == "MF":
output.append("Object")
elif condition == "FM":
output.append("Subject")
else:
output.append("Other")
'''Exp10'''
elif summaries_df["Experiment"][i] == "E10":
# rs = summaries_df["Response"][i].strip()
if rs == "yes":
output.append("1")
else:
output.append("0")
else:
print("can;t find the Exp:", summaries_df["Experiment"][i])
output.append("NA")
# print(output)
# exit()
'''human'''
self.data = pd.DataFrame(list(zip(summaries_df["Experiment"], summaries_df["Question_ID"], summaries_df["Item"], summaries_df["Response"], summaries_df["Factor 2"], summaries_df["Stimuli 1"], summaries_df["Coding"], output)),
columns=["Experiment", "Question_ID", "Item", "Response", "Factor 2", "Simulate 1","Original_Coding","Coding"])
# '''LLM'''
# self.data = pd.DataFrame(list(zip(summaries_df["Experiment"], summaries_df["Question_ID"], summaries_df["Item"], summaries_df["Response"], summaries_df["Factor 2"], summaries_df["Stimuli 1"], output)),
# columns=["Experiment", "Question_ID", "Item", "Response", "Factor 2", "Simulate 1","Coding"])
print(self.data.head())
return self.data
def code_results_llm(self, summaries_df):
'''code results from LLM's response'''
output = []
'''database for Exp4'''
item4 = pd.read_csv(envs.ITEM_4_DATA)
wordpair2code = {}
for j in range(len(item4['Coding'])):
wordpair2code[item4['Pair'][j]] = item4['Coding'][j]
'''verb for Exp5'''
item5 = pd.read_csv(envs.ITEM_5_DATA)
# item corresponding to verb, same item id corresponding to verb pair
item2verb2 = {}
item2verb1 = {}
Stimuli1, Stimuli2 = {}, {}
for j in range(len(item5['Item'])):
item2verb1[item5['Item'][j]] = item5['Verb1'][j]
item2verb2[item5['Item'][j]] = item5['Verb2'][j]
Stimuli1[item5['ID'][j]] = item5['Stimuli-1'][j]
Stimuli2[item5['ID'][j]] = item5['Stimuli-2'][j]
male_keyword = ["he", "his", "himself"]
female_keyword = ["she", "her", "herself"]
print(len(summaries_df["Experiment"]))
for i in range(len(summaries_df["Experiment"])):
# vote_1_1, vote_1_2, vote_1_3 = 0, 0, 0
# print()
if pd.isna(summaries_df["Response"][i]):
output.append("Other")
continue
rs = summaries_df["Response"][i].strip().lower()
'''Exp1'''
if summaries_df["Experiment"][i] == "E1":
print("E1", rs)
rs = rs.replace('"','')
if rs == "round":
# vote_1_1 += 1
output.append("Round")
elif rs == "spiky":
output.append("Spiky")
else:
output.append("Other")
'''Exp2'''
elif summaries_df["Experiment"][i] == "E2":
# rs = summaries_df["Response"][i].strip()
rs = rs.split(' ')
print("E2", rs)
male, female = 0, 0
for word in rs:
if word in female_keyword and male == 0:
female = 1
output.append("Female")
break
if word in male_keyword and female == 0:
male = 1
output.append("Male")
break
if male == 0 and female == 0 :
output.append("Other")
'''Exp3'''
elif summaries_df["Experiment"][i] == "E3":
# rs = summaries_df["Response"][i].strip()
print("E3", rs)
rs = rs.replace('"', '')
pair = summaries_df["Factor 2"][i]
word1, word2 = pair.split('_')
if rs == word1:
if len(word1) > len(word2):
output.append("Long")
else:
output.append("Short")
elif rs == word2:
if len(word1) > len(word2):
output.append("Short")
else:
output.append("Long")
else:
output.append("Other")
'''Exp4'''
elif summaries_df["Experiment"][i] == "E4":
# rs = summaries_df["Response"][i].strip()
meaning_word = rs.split(";")[4].replace(" ",'')
target = summaries_df["Factor 2"][i].strip().lower()
pair = target + "_" + meaning_word
print("E4:", pair)
if pair in wordpair2code.keys():
output.append(wordpair2code[pair])
else:
output.append("Other")
'''Exp5'''
elif summaries_df["Experiment"][i] == "E5" or summaries_df["Experiment"][i] == "E51":
# sentence = summaries_df["Response"][i].strip()
item_id = summaries_df["Item"][i]
question_id = summaries_df["Question_ID"][i]
sti1, sti2 = "", ""
if summaries_df["Experiment"][i] == "E51":
sti1 = Stimuli1[question_id[0:-1]].lower().replace("...", "")
sti2 = Stimuli2[question_id[0:-1]].lower().replace("...", "")
verb = item2verb1[item_id].lower()
sentence = sti1 + " " + rs.replace(sti1, "")
print("E5", verb, sentence)
if summaries_df["Experiment"][i] == "E5":
sti1 = Stimuli1[question_id].lower().replace("...", "")
# print(sti1)
sti2 = Stimuli2[question_id].lower().replace("...", "")
verb = item2verb2[item_id].lower()
sentence = sti2.replace("...","") + " " + rs.replace(sti2, "")
print("E5", verb, sentence)
doc = nlp1(sentence.replace(" "," "))
# print(doc)
# print()
verb_token = None
for token in doc:
# print(token.lemma_)
if token.lemma_ == verb:
verb_token = token
break
# exit()
if verb_token is None:
output.append("Other")
print("E5 The target verb is missing from the sentence.")
else:
pobj, dative = None, None
# print(verb_token.children)
# exit()
for child in verb_token.children:
print(child)
if (child.dep_ == 'dative' and child.pos_ == "ADP") or (child.text == "to" and child.dep_ == 'prep' and child.pos_ == "ADP"):
pobj = child.text
if child.dep_ == 'dative':
dative = child.text
print("E5", pobj, dative)
# exit()
if pobj:
output.append("PO")
elif dative:
output.append("DO")
else:
print("Other", sentence, pobj, dative)
# exit()
output.append("Other")
'''Exp6'''
elif summaries_df["Experiment"][i] == "E6":
sentence = summaries_df["Stimuli 1"][i].strip().lower()
print("E6", sentence)
doc = nlp1(sentence)
subject = "None"
obj = "None"
# 遍历依存关系,寻找主语和宾语
for token in doc:
if token.dep_ == "nsubj":
subject = token.text
elif token.dep_ == "dobj":
obj = token.text
print("E6", subject, obj)
if subject in rs and obj in rs:
print(rs, subject, obj, "Other")
output.append("Other")
elif subject in rs:
print(rs, subject, obj, "VP")
output.append("VP")
elif obj in rs:
print(rs, subject, obj, "NP")
output.append("NP")
else:
print(rs, subject, obj, "Other")
output.append("Other")
'''Exp7'''
elif summaries_df["Experiment"][i] == "E7":
# rs = summaries_df["Response"][i].strip().lower()
rs = rs.replace(".", "").replace(",", "")
print("E7",rs)
if rs == "no":
output.append("0")
elif rs == "yes":
output.append("1")
else:
output.append("Other")
'''Exp8'''
elif summaries_df["Experiment"][i] == "E8":
# rs = summaries_df["Response"][i].strip()
print("E8",rs)
if "something is wrong with the question" in rs:
output.append("1")
else:
output.append("0")
'''Exp9'''
elif summaries_df["Experiment"][i] == "E9":
male, female = 0, 0
# rs = summaries_df["Response"][i].strip()
if "because" in rs:
rs = rs.replace("because because","because").split("because")[1]
else:
rs = rs
condition = summaries_df["Factor 2"][i].strip()
rs = rs.split(" ")
for w in rs:
if w in male_keyword and female != 1:
male = 1
break
if w in female_keyword and male != 1:
female = 1
break
print("E9", "condition", condition, "male", male, "female", female)
if male == 0 and female == 0:
output.append('Other')
else:
if male == 1 and female==0:
if condition == "MF":
output.append("Subject")
elif condition == "FM":
output.append("Object")
else:
output.append("Other")
elif female == 1 and male ==0:
if condition == "MF":
output.append("Object")
elif condition == "FM":
output.append("Subject")
else:
output.append("Other")
'''Exp10'''
elif summaries_df["Experiment"][i] == "E10":
# rs = summaries_df["Response"][i].strip()
rs = rs.replace(".", "")
if rs == "yes":
output.append("1")
else:
output.append("0")
else:
print("can;t find the Exp:", summaries_df["Experiment"][i])
output.append("NA")
# print(output)
# exit()
'''human'''
# self.data = pd.DataFrame(list(zip(summaries_df["Experiment"], summaries_df["Question_ID"], summaries_df["Item"], summaries_df["Response"], summaries_df["Factor 2"], summaries_df["Stimuli 1"], summaries_df["Coding"], output)),
# columns=["Experiment", "Question_ID", "Item", "Response", "Factor 2", "Simulate 1","Original_Coding","Coding"])
'''LLM'''
self.data = pd.DataFrame(list(zip(summaries_df["Experiment"], summaries_df["Question_ID"], summaries_df["Item"], summaries_df["Response"], summaries_df["Factor 2"], summaries_df["Stimuli 1"], output)),
columns=["Experiment", "Question_ID", "Item", "Response", "Factor 2", "Simulate 1","Coding"])
print(self.data.head())
return self.data
def calculate_js_divergence(self, file_path_1, file_path_2):
"""
Calculate the Jensen-Shannon divergence for response distributions between two datasets.
- Extracts E5 and E51 pairs, creates new data based on comparison,
removes the original E5 and E51, and then calculates the JS divergence between the datasets.
Parameters:
file_path_1 (str): Path to the first dataset file (Excel format).
file_path_2 (str): Path to the second dataset file (CSV format).
Returns:
float: The average JS divergence across all common Question_IDs.
"""
# Load the datasets
human_df = pd.read_excel(file_path_1)
llm_df = pd.read_csv(file_path_2)
def create_e5_entries(df):
new_entries = []
for i in range(len(df) - 1):
if 'E51' in df.iloc[i]['Experiment']:
priming_id = df.iloc[i][0]-1
priming_row_id = df[df.iloc[:, 0] == priming_id].index[0]
new_question_id = df.iloc[priming_row_id]['Question_ID']
label = 1 if df.iloc[i]['Coding'] == df.iloc[priming_row_id]['Coding'] else 0
new_entries.append({
'Question_ID': new_question_id,
'Response': f'{df.iloc[i]["Coding"]}-{df.iloc[priming_row_id]["Coding"]}',
'Coding': label
})
return pd.DataFrame(new_entries)
# Create new E5 entries for both datasets
human_e5 = create_e5_entries(human_df)
llm_e5 = create_e5_entries(llm_df)
# Remove E5 and E51 entries from both datasets
human_df = human_df[~human_df['Question_ID'].str.contains('E5')]
llm_df = llm_df[~llm_df['Question_ID'].str.contains('E5')]
# Append new E5 entries to the cleaned dataframes
human_df = pd.concat([human_df, human_e5], ignore_index=True)
llm_df = pd.concat([llm_df, llm_e5], ignore_index=True)
### Calculate Average JS Divergence ###
# Extract the relevant columns for JS divergence calculation
human_responses = human_df[['Question_ID', 'Coding']]
llm_responses = llm_df[['Question_ID', 'Coding']]
# Get unique Question_IDs present in both datasets
common_question_ids = set(human_responses['Question_ID']).intersection(set(llm_responses['Question_ID']))
# Initialize a list to store JS divergence for each Question_ID
js_divergence_list = []
js_divergence ={}
# Calculate JS divergence for each common Question_ID
for q_id in common_question_ids:
# Get response distributions for the current Question_ID in both datasets
human_dist = human_responses[human_responses['Question_ID'] == q_id]['Coding'].value_counts(normalize=True)
llm_dist = llm_responses[llm_responses['Question_ID'] == q_id]['Coding'].value_counts(normalize=True)
# Reindex the distributions to have the same index, filling missing values with 0
all_responses = set(human_dist.index).union(set(llm_dist.index))
human_dist = human_dist.reindex(all_responses, fill_value=0)
llm_dist = llm_dist.reindex(all_responses, fill_value=0)
# Calculate JS divergence and add to the list
js_div = jensenshannon(human_dist, llm_dist, base=2)
experiment_id = q_id.split('_')[1]
if experiment_id not in js_divergence:
js_divergence[experiment_id] = []
js_divergence[experiment_id].append(js_div)
js_divergence_list.append(js_div)
#js_divergence[q_id] = js_div
# Calculate the average JS divergence
# JS per experiment
avg_js_divergence_per_experiment = {exp: 1- np.nanmean(divs) for exp, divs in js_divergence.items()}
print(avg_js_divergence_per_experiment)
# JS overall
avg_js_divergence = 1 - np.nanmean(js_divergence_list)
print("avg_js_divergence:", avg_js_divergence)
return avg_js_divergence
def evaluate_humanlike(self, summaries_df, human_data_path, result_save_path):
'''
evaluate humanlike score
1. code the result
2. comput the similaritirs between human and model
process model responses'''
'''coding human data'''
# self.huamn_df = pd.read_csv(human_data_path)
# self.data = self.code_results(self.huamn_df)
save_path = human_data_path.replace('.csv','_coding.csv')
human_save_path = "./src/datasets/coding_human.xlsx"
# if save_path is not None:
# print(f'Save human coding results to {save_path}')
# fpath = Path(save_path)
# fpath.parent.mkdir(parents=True, exist_ok=True)
# self.data.to_csv(fpath)
'''coding llm data'''
save_path = result_save_path.replace('.csv','_coding.csv')
self.llm_df = self.code_results_llm(summaries_df)
if save_path is not None:
print(f'Save LLM coding results to {save_path}')
fpath = Path(save_path)
fpath.parent.mkdir(parents=True, exist_ok=True)
self.llm_df.to_csv(fpath)
# file_path_1 = '/Users/simon/Downloads/coding_human.xlsx'
# file_path_2 = '/Users/simon/Downloads/Meta-Llama-3.1-70B-Instruct_coding.csv'
avg_js_divergence = self.calculate_js_divergence("./src/datasets/coding_human.xlsx", save_path)
return avg_js_divergence
def evaluate_hallucination(self, summaries_df):
"""
Evaluate the hallucination rate in summaries. Updates the 'scores' attribute
of the instance with the computed scores.
Args:
summaries_df (DataFrame): DataFrame containing source docs and summaries.
Returns:
list: List of hallucination scores. Also updates the 'scores' attribute of the instance.
"""
hem_scores = []
sources = []
summaries = []
source_summary_pairs = util.create_pairs(summaries_df)
'''评价模型结果'''
for doc, summary in tqdm(source_summary_pairs, desc="Evaluating Humanlikeness"):
if util.is_summary_valid(summary):
try:
summary = summary.replace('<bos>','').replace('<eos>','')
score = self.model.predict([doc, summary])# [0]
if not isinstance(score, float):
try:
score = score.item()
except:
logging.warning(f"Score type mismatch: Expected float, got {type(score)}.")
continue
hem_scores.append(score)
sources.append(doc)
summaries.append(summary)
except Exception as e:
logging.error(f"Error while running HEM: {e}")
raise
self.scores = hem_scores
eval_results = {'source': sources, 'summary': summaries, 'HEM scores': hem_scores}
return hem_scores, eval_results
# for doc, summary in tqdm(source_summary_pairs, desc="Evaluating hallucinations"):
# if util.is_summary_valid(summary):
# try:
# # summary_pieces = summary.split('\n')
# # summary = summary_pieces[0] if len(summary_pieces[0].strip()) > 0 else summary_pieces[1]
# summary = summary.replace('<bos>','').replace('<eos>','')
# # print([doc, summary])
# # print(self.model.predict([doc, summary]))
# score = self.model.predict([doc, summary])# [0]
# if not isinstance(score, float):
# try:
# score = score.item()
# except:
# logging.warning(f"Score type mismatch: Expected float, got {type(score)}.")
# continue
# hem_scores.append(score)
# sources.append(doc)
# summaries.append(summary)
# except Exception as e:
# logging.error(f"Error while running HEM: {e}")
# raise
# self.scores = hem_scores
# eval_results = {'source': sources, 'summary': summaries, 'HEM scores': hem_scores}
# return hem_scores, eval_results
def compute_factual_consistency_rate(self, threshold=0.5):
"""
Compute the factual consistency rate of the evaluated summaries based on
the previously calculated scores. This method relies on the 'scores'
attribute being populated, typically via the 'evaluate_hallucination' method.
Returns:
float: Factual Consistency Rate. Also updates the 'factual_consistency_rate'
and 'hallucination_rate' attributes of the instance.
Raises:
ValueError: If scores have not been calculated prior to calling this method.
"""
if not self.scores:
error_msg = "Scores not calculated. Call evaluate_hallucination() first."
logging.error(error_msg)
raise ValueError(error_msg)
# Use threshold of 0.5 to compute factual_consistency_rate
num_above_threshold = sum(score >= threshold for score in self.scores)
num_total = len(self.scores)
if not num_total:
raise ValueError("No scores available to compute factual consistency rate.")
self.factual_consistency_rate = (num_above_threshold / num_total) * 100
self.hallucination_rate = 100 - self.factual_consistency_rate
return self.factual_consistency_rate
|