File size: 4,661 Bytes
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import logging
import pprint
import os

from huggingface_hub import snapshot_download

import src.backend.run_eval_suite as run_eval_suite
import src.backend.manage_requests as manage_requests
import src.backend.sort_queue as sort_queue
import src.envs as envs

os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'

logging.basicConfig(level=logging.ERROR)
pp = pprint.PrettyPrinter(width=80)

PENDING_STATUS = "PENDING"
RUNNING_STATUS = "RUNNING"
FINISHED_STATUS = "FINISHED"
FAILED_STATUS = "FAILED"
# import os
snapshot_download(repo_id=envs.RESULTS_REPO, revision="main",
                local_dir=envs.EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)

snapshot_download(repo_id=envs.QUEUE_REPO, revision="main",
                local_dir=envs.EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
# exit()

def run_auto_eval(args):
    if not args.reproduce:
        current_pending_status = [PENDING_STATUS]
        print('_________________')
        manage_requests.check_completed_evals(
            api=envs.API,
            checked_status=RUNNING_STATUS,
            completed_status=FINISHED_STATUS,
            failed_status=FAILED_STATUS,
            hf_repo=envs.QUEUE_REPO,
            local_dir=envs.EVAL_REQUESTS_PATH_BACKEND,
            hf_repo_results=envs.RESULTS_REPO,
            local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND
        )
        logging.info("Checked completed evals")
        eval_requests = manage_requests.get_eval_requests(job_status=current_pending_status,
                                                        hf_repo=envs.QUEUE_REPO,
                                                        local_dir=envs.EVAL_REQUESTS_PATH_BACKEND)
        logging.info("Got eval requests")
        eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests)
        logging.info("Sorted eval requests")

        print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
        print(eval_requests)
        if len(eval_requests) == 0:
            print("No eval requests found. Exiting.")
            return

        if args.model is not None:
            eval_request = manage_requests.EvalRequest(
                model=args.model,
                status=PENDING_STATUS,
                precision=args.precision
            )
            pp.pprint(eval_request)
        else:
            eval_request = eval_requests[0]
            pp.pprint(eval_request)

        # manage_requests.set_eval_request(
        #     api=envs.API,
        #     eval_request=eval_request,
        #     new_status=RUNNING_STATUS,
        #     hf_repo=envs.QUEUE_REPO,
        #     local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
        # )
        # logging.info("Set eval request to running, now running eval")

        run_eval_suite.run_evaluation(
            eval_request=eval_request,
            local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
            results_repo=envs.RESULTS_REPO,
            batch_size=1,
            device=envs.DEVICE,
            no_cache=True,
            need_check=not args.publish,
            write_results=args.update
        )
        logging.info("Eval finished, now setting status to finished")
    else:
        eval_request = manage_requests.EvalRequest(
            model=args.model,
            status=PENDING_STATUS,
            precision=args.precision
        )
        pp.pprint(eval_request)
        logging.info("Running reproducibility eval")

        run_eval_suite.run_evaluation(
            eval_request=eval_request,
            local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
            results_repo=envs.RESULTS_REPO,
            batch_size=1,
            device=envs.DEVICE,
            need_check=not args.publish,
            write_results=args.update
        )
        logging.info("Reproducibility eval finished")


def main():
    parser = argparse.ArgumentParser(description="Run auto evaluation with optional reproducibility feature")

    # Optional arguments
    parser.add_argument("--reproduce", type=bool, default=True, help="Reproduce the evaluation results")
    parser.add_argument("--model", type=str, default=None, help="Your Model ID")
    parser.add_argument("--precision", type=str, default="float16", help="Precision of your model")
    parser.add_argument("--publish", type=bool, default=False, help="whether directly publish the evaluation results on HF")
    parser.add_argument("--update", type=bool, default=False, help="whether to update google drive files")

    args = parser.parse_args()

    run_auto_eval(args)


if __name__ == "__main__":
    main()