Spaces:
Sleeping
Sleeping
File size: 9,661 Bytes
ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 66a40a4 ee31436 66a40a4 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 e7fdefd d96a992 ee31436 e7fdefd d96a992 e7fdefd d96a992 4592770 8548d58 79cf136 9271c65 8548d58 ee31436 8548d58 ee31436 56bf4e8 ee31436 7fadd3a 7cbe773 e29f2bd 7c68972 ee31436 62e965e 56bf4e8 0d9757a ee31436 7aeddee ee31436 0d9757a e7fdefd 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 7a028b8 56bf4e8 ee31436 56bf4e8 ee31436 7cbe773 ee31436 e29f2bd ee31436 e29f2bd ee31436 e29f2bd ee31436 56bf4e8 ee31436 56bf4e8 ad27ecb 56bf4e8 ee31436 2a968dc ee31436 e7fdefd ee31436 56bf4e8 ee31436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import glob
import json
import os
from dataclasses import dataclass
import numpy as np
import dateutil
import src.display.formatting as formatting
import src.display.utils as utils
import src.submission.check_validity as check_validity
@dataclass
class EvalResult:
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: utils.Precision = utils.Precision.Unknown
model_type: utils.ModelType = utils.ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: utils.WeightType = utils.WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
print('json_filepath',json_filepath)
print(data)
config = data.get("config")
print(config)
# Precision
precision = utils.Precision.from_str(config.get("model_dtype"))
# Get model and org
full_model = config.get("model_name", config.get("model_args", None))
org, model = full_model.split("/", 1) if "/" in full_model else (None, full_model)
if org:
result_key = f"{org}_{model}_{precision.value.name}"
else:
result_key = f"{model}_{precision.value.name}"
still_on_hub, _, model_config = check_validity.is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True,
test_tokenizer=False)
if model_config:
architecture = ";".join(getattr(model_config, "architectures", ["?"]))
else:
architecture = "?"
# Extract results available in this file (some results are split in several files)
results = {}
for task in utils.Tasks:
#print(task)
task = task.value
#print(task.benchmark)
#print(task.metric)
#print(task.col_name)
#print(task.value)
if isinstance(task.metric, str):
# accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if
# task.benchmark == k and isinstance(v, dict)])
# accs = np.array([np.around(v*100, decimals=0) for k, v in data["results"].items() if task.benchmark == k])
accs = []
import math
for k, v in data["results"].items():
if task.benchmark == k:
if isinstance(v, (int, float)) and not math.isnan(v):
accs.append(np.around(v * 100, decimals=0))
elif isinstance(v, list):
# 处理列表中的每个数值
accs.extend([np.around(x * 100, decimals=0) for x in v if
isinstance(x, (int, float)) and not math.isnan(x)])
else:
# 跳过 NaN 或不符合条件的值
accs.append(None)
# 去掉 None 值(如果有)
accs = np.array([x for x in accs if x is not None])
# 过滤掉 None 值,确保 accs 只包含有效的数值
accs = accs[accs != None]
results[task.benchmark] = accs
elif isinstance(task.metric, list):
accs = np.array([str(v.get(task.metric, None)) for k, v in data["results"].items() if
task.benchmark == k and isinstance(v, dict)])
accs = accs[accs != None]
results[task.benchmark] = accs
else:
print(f"Skipping task with unhandled metric type: {type(task.metric)}")
# # We average all scores of a given metric (not all metrics are present in all files)
# accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
#
# results[task.benchmark] = accs
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision= config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
all_files_before = os.listdir(requests_path)
print("test the variable:", all_files_before)
print(self.full_model)
#print(self.precision.value.name)
request_file = get_request_file_for_model(requests_path, self.full_model)
print("file name:",request_file)
#all_files = os.listdir(request_file)
#print("Files in the folder:", all_files)
try:
with open(request_file, "r") as f:
request = json.load(f)
print(request)
self.model_type = utils.ModelType.from_str(request.get("model_type", ""))
#self.weight_type = utils.WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = int(float(request.get("params", "0").replace('B', '')))
self.date = request.get("submitted_time", "")
# print(self.license)
print('updated:', self)
except FileNotFoundError:
print(f"Could not find request file for {self.org}/{self.model}")
except json.JSONDecodeError:
print(f"Error decoding JSON in request file for {self.org}/{self.model}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
utils.AutoEvalColumn.precision.name: self.precision.value.name,
utils.AutoEvalColumn.model_type.name: self.model_type.value.name,
#utils.AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
utils.AutoEvalColumn.weight_type.name: self.weight_type.value.name,
utils.AutoEvalColumn.architecture.name: self.architecture,
utils.AutoEvalColumn.model.name: formatting.make_clickable_model(self.full_model),
utils.AutoEvalColumn.dummy.name: self.full_model,
utils.AutoEvalColumn.revision.name: self.revision,
utils.AutoEvalColumn.license.name: self.license,
utils.AutoEvalColumn.likes.name: self.likes,
utils.AutoEvalColumn.params.name: self.num_params,
utils.AutoEvalColumn.still_on_hub.name: self.still_on_hub,
}
for task in utils.Tasks:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
return data_dict
def get_request_file_for_model(requests_path, model_name):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}.json",
)
#request_files = glob.glob(request_files)
# Select correct request file (precision)
# request_file = ""
# request_files = sorted(request_files, reverse=True)
# for tmp_request_file in request_files:
# with open(tmp_request_file, "r") as f:
# req_content = json.load(f)
# # if (
# # req_content["status"] in ["FINISHED"]
# # and req_content["precision"] == precision.split(".")[-1]
# # ):
# # request_file = tmp_request_file
return request_files
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
print("results_path", results_path)
for root, _, files in os.walk(results_path):
print("file",files)
for f in files:
if f.endswith(".json"):
model_result_filepaths.extend([os.path.join(root, f)])
print("model_result_filepaths:", model_result_filepaths)
# exit()
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
print("request_path:",requests_path)
eval_result.update_with_request_file(requests_path)
print(eval_result)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in
eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results
|