Spaces:
Sleeping
Sleeping
File size: 4,051 Bytes
e6b999f e00b063 e6b999f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
import os
import time
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
def loading_pdf():
return "加载中...⏳"
def pdf_changes(pdf_doc, openai_api_key, chunk_size, chunk_overlap, temperature, return_source):
if not openai_api_key:
return "你忘记了OpenAI API密钥🗝️"
os.environ['OPENAI_API_KEY'] = openai_api_key
loader = OnlinePDFLoader(pdf_doc.name)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
global qa
qa = ConversationalRetrievalChain.from_llm(
llm=OpenAI(temperature=temperature,model="text-davinci-003",max_tokens=1000),
retriever=retriever,
return_source_documents=return_source)
return "准备就绪🚀"
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0], history)
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
def infer(question, history):
res = []
for human, ai in history[:-1]:
pair = (human, ai)
res.append(pair)
chat_history = res
query = question
result = qa({"question": query, "chat_history": chat_history})
return result["answer"]
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto; background-color: #f0f0f0;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1 style="color: #3399FF; font-family: 'Courier New', Courier, monospace;">Chat PDF[text-davinci-003]📚</h1>
<p style="text-align: center;color: #666666; font-family: 'Courier New', Courier, monospace;">上传你的PDF,并将其加载到向量库中,<br />
当一切准备就绪,你就可以开始提出关于pdf的问题了 🧐 <br />
此版本使用text-davinci-003作为LLM</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
openai_api_key = gr.Textbox(label="你的OpenAI API密钥🔐", type="password")
pdf_doc = gr.File(label="加载一个pdf📄", file_types=['.pdf'], type="file")
with gr.Row():
langchain_status = gr.Textbox(label="状态📊", placeholder="", interactive=False)
chunk_size_slider = gr.Slider(minimum=100, maximum=2000, value=300, step=50, label='块大小📏')
chunk_overlap_slider = gr.Slider(minimum=0, maximum=1000, value=50, step=10, label='块重叠🔀')
temperature_slider = gr.Slider(minimum=0, maximum=1.0, value=0.5, step=0.05, label='温度🌡️')
return_source_checkbox = gr.Checkbox(label='返回源文件📑', default=False)
load_pdf = gr.Button("加载PDF到LangChain🔄")
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
question = gr.Textbox(label="问题❓", placeholder="输入你的问题并按回车 ")
submit_btn = gr.Button("发送消息📨")
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_api_key, chunk_size_slider, chunk_overlap_slider, temperature_slider, return_source_checkbox], outputs=[langchain_status], queue=False)
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot)
demo.launch() |