Spaces:
Runtime error
Runtime error
File size: 7,138 Bytes
2ba5518 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import math
import torch
from torch import nn as nn
from torch.nn import functional as F
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm
@torch.no_grad()
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
"""Initialize network weights.
Args:
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
scale (float): Scale initialized weights, especially for residual
blocks. Default: 1.
bias_fill (float): The value to fill bias. Default: 0
kwargs (dict): Other arguments for initialization function.
"""
if not isinstance(module_list, list):
module_list = [module_list]
for module in module_list:
for m in module.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, _BatchNorm):
init.constant_(m.weight, 1)
if m.bias is not None:
m.bias.data.fill_(bias_fill)
def make_layer(basic_block, num_basic_block, **kwarg):
"""Make layers by stacking the same blocks.
Args:
basic_block (nn.module): nn.module class for basic block.
num_basic_block (int): number of blocks.
Returns:
nn.Sequential: Stacked blocks in nn.Sequential.
"""
layers = []
for _ in range(num_basic_block):
layers.append(basic_block(**kwarg))
return nn.Sequential(*layers)
class ResidualBlockNoBN(nn.Module):
"""Residual block without BN.
It has a style of:
---Conv-ReLU-Conv-+-
|________________|
Args:
num_feat (int): Channel number of intermediate features.
Default: 64.
res_scale (float): Residual scale. Default: 1.
pytorch_init (bool): If set to True, use pytorch default init,
otherwise, use default_init_weights. Default: False.
"""
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
super(ResidualBlockNoBN, self).__init__()
self.res_scale = res_scale
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
self.relu = nn.ReLU(inplace=True)
if not pytorch_init:
default_init_weights([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = self.conv2(self.relu(self.conv1(x)))
return identity + out * self.res_scale
class Upsample(nn.Sequential):
"""Upsample module.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat):
m = []
if (scale & (scale - 1)) == 0: # scale = 2^n
for _ in range(int(math.log(scale, 2))):
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(2))
elif scale == 3:
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(3))
else:
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
super(Upsample, self).__init__(*m)
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
"""Warp an image or feature map with optical flow.
Args:
x (Tensor): Tensor with size (n, c, h, w).
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
padding_mode (str): 'zeros' or 'border' or 'reflection'.
Default: 'zeros'.
align_corners (bool): Before pytorch 1.3, the default value is
align_corners=True. After pytorch 1.3, the default value is
align_corners=False. Here, we use the True as default.
Returns:
Tensor: Warped image or feature map.
"""
assert x.size()[-2:] == flow.size()[1:3]
_, _, h, w = x.size()
# create mesh grid
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
grid.requires_grad = False
vgrid = grid + flow
# scale grid to [-1,1]
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
# TODO, what if align_corners=False
return output
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
"""Resize a flow according to ratio or shape.
Args:
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
size_type (str): 'ratio' or 'shape'.
sizes (list[int | float]): the ratio for resizing or the final output
shape.
1) The order of ratio should be [ratio_h, ratio_w]. For
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
ratio > 1.0).
2) The order of output_size should be [out_h, out_w].
interp_mode (str): The mode of interpolation for resizing.
Default: 'bilinear'.
align_corners (bool): Whether align corners. Default: False.
Returns:
Tensor: Resized flow.
"""
_, _, flow_h, flow_w = flow.size()
if size_type == 'ratio':
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
elif size_type == 'shape':
output_h, output_w = sizes[0], sizes[1]
else:
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
input_flow = flow.clone()
ratio_h = output_h / flow_h
ratio_w = output_w / flow_w
input_flow[:, 0, :, :] *= ratio_w
input_flow[:, 1, :, :] *= ratio_h
resized_flow = F.interpolate(
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
return resized_flow
# TODO: may write a cpp file
def pixel_unshuffle(x, scale):
""" Pixel unshuffle.
Args:
x (Tensor): Input feature with shape (b, c, hh, hw).
scale (int): Downsample ratio.
Returns:
Tensor: the pixel unshuffled feature.
"""
b, c, hh, hw = x.size()
out_channel = c * (scale**2)
assert hh % scale == 0 and hw % scale == 0
h = hh // scale
w = hw // scale
x_view = x.view(b, c, h, scale, w, scale)
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w) |