Spaces:
Running
Running
File size: 2,716 Bytes
b72c906 a76bb3d b8a9903 a76bb3d b8a9903 b72c906 b8a9903 a76bb3d b8a9903 a76bb3d ccfd95d 9bed776 a76bb3d f3a055f a76bb3d ccfd95d a76bb3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import { env, AutoProcessor, AutoModel, RawImage } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
// Since we will download the model from the Hugging Face Hub, we can skip the local model check
env.allowLocalModels = false;
// Reference the elements that we will need
const status = document.getElementById('status');
const fileUpload = document.getElementById('upload');
const imageContainer = document.getElementById('container');
const example = document.getElementById('example');
const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';
// Create a new object detection pipeline
status.textContent = 'Loading model...';
const processor = await AutoProcessor.from_pretrained('Xenova/yolov9-c');
const model = await AutoModel.from_pretrained('Xenova/yolov9-c', {
quantized: false,
});
status.textContent = 'Ready';
example.addEventListener('click', (e) => {
e.preventDefault();
detect(EXAMPLE_URL);
});
fileUpload.addEventListener('change', function (e) {
const file = e.target.files[0];
if (!file) {
return;
}
const reader = new FileReader();
// Set up a callback when the file is loaded
reader.onload = e2 => detect(e2.target.result);
reader.readAsDataURL(file);
});
// Detect objects in the image
async function detect(img) {
imageContainer.innerHTML = '';
imageContainer.style.backgroundImage = `url(${img})`;
status.textContent = 'Analysing...';
const image = await RawImage.fromURL(img);
const { pixel_values } = await processor(image);
const { outputs } = await model({images: pixel_values});
status.textContent = '';
outputs.tolist().forEach(renderBox);
}
// Render a bounding box and label on the image
function renderBox([xmin, ymin, xmax, ymax, score, id]) {
console.log([xmin, ymin, xmax, ymax, score, id])
// Generate a random color for the box
const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0);
// Draw the box
const boxElement = document.createElement('div');
boxElement.className = 'bounding-box';
Object.assign(boxElement.style, {
borderColor: color,
left: 100 * xmin / 640 + '%',
top: 100 * ymin / 640 + '%',
width: 100 * (xmax - xmin) / 640 + '%',
height: 100 * (ymax - ymin) / 640 + '%',
})
// Draw label
const labelElement = document.createElement('span');
labelElement.textContent = model.config.id2label[id];
labelElement.className = 'bounding-box-label';
labelElement.style.backgroundColor = color;
boxElement.appendChild(labelElement);
imageContainer.appendChild(boxElement);
}
|