Spaces:
Sleeping
Sleeping
import os | |
import time | |
import torch | |
import torchaudio | |
import torchvision | |
import numpy as np | |
from torch.utils.data import Dataset, DataLoader | |
from torch.utils.tensorboard import SummaryWriter | |
import sys | |
# Add parent directory to path to import the preprocess functions | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
from preprocess import process_audio_data, process_image_data | |
# Print library versions | |
print(f"\033[92mINFO\033[0m: PyTorch version: {torch.__version__}") | |
print(f"\033[92mINFO\033[0m: Torchaudio version: {torchaudio.__version__}") | |
print(f"\033[92mINFO\033[0m: Torchvision version: {torchvision.__version__}") | |
# Device selection | |
device = torch.device( | |
"cuda" | |
if torch.cuda.is_available() | |
else "mps" if torch.backends.mps.is_available() else "cpu" | |
) | |
print(f"\033[92mINFO\033[0m: Using device: {device}") | |
# Hyperparameters | |
batch_size = 16 | |
epochs = 2 | |
learning_rate = 0.0001 | |
# Model save directory | |
os.makedirs("models/", exist_ok=True) | |
class WatermelonDataset(Dataset): | |
def __init__(self, data_dir): | |
self.data_dir = data_dir | |
self.samples = [] | |
# Walk through the directory structure | |
for sweetness_dir in os.listdir(data_dir): | |
sweetness = float(sweetness_dir) | |
sweetness_path = os.path.join(data_dir, sweetness_dir) | |
if os.path.isdir(sweetness_path): | |
for id_dir in os.listdir(sweetness_path): | |
id_path = os.path.join(sweetness_path, id_dir) | |
if os.path.isdir(id_path): | |
audio_file = os.path.join(id_path, f"{id_dir}.wav") | |
image_file = os.path.join(id_path, f"{id_dir}.jpg") | |
if os.path.exists(audio_file) and os.path.exists(image_file): | |
self.samples.append((audio_file, image_file, sweetness)) | |
print(f"\033[92mINFO\033[0m: Loaded {len(self.samples)} samples from {data_dir}") | |
def __len__(self): | |
return len(self.samples) | |
def __getitem__(self, idx): | |
audio_path, image_path, label = self.samples[idx] | |
# Load and process audio | |
try: | |
waveform, sample_rate = torchaudio.load(audio_path) | |
mfcc = process_audio_data(waveform, sample_rate) | |
# Load and process image | |
image = torchvision.io.read_image(image_path) | |
image = image.float() | |
processed_image = process_image_data(image) | |
return mfcc, processed_image, torch.tensor(label).float() | |
except Exception as e: | |
print(f"\033[91mERR!\033[0m: Error processing sample {idx}: {e}") | |
# Return a fallback sample or skip this sample | |
# For simplicity, we'll return the first sample again | |
if idx == 0: # Prevent infinite recursion | |
raise e | |
return self.__getitem__(0) | |
class WatermelonModel(torch.nn.Module): | |
def __init__(self): | |
super(WatermelonModel, self).__init__() | |
# LSTM for audio features | |
self.lstm = torch.nn.LSTM( | |
input_size=376, hidden_size=64, num_layers=2, batch_first=True | |
) | |
self.lstm_fc = torch.nn.Linear( | |
64, 128 | |
) # Convert LSTM output to 128-dim for merging | |
# ResNet50 for image features | |
self.resnet = torchvision.models.resnet50(weights=torchvision.models.ResNet50_Weights.DEFAULT) | |
self.resnet.fc = torch.nn.Linear( | |
self.resnet.fc.in_features, 128 | |
) # Convert ResNet output to 128-dim for merging | |
# Fully connected layers for final prediction | |
self.fc1 = torch.nn.Linear(256, 64) | |
self.fc2 = torch.nn.Linear(64, 1) | |
self.relu = torch.nn.ReLU() | |
def forward(self, mfcc, image): | |
# LSTM branch | |
lstm_output, _ = self.lstm(mfcc) | |
lstm_output = lstm_output[:, -1, :] # Use the output of the last time step | |
lstm_output = self.lstm_fc(lstm_output) | |
# ResNet branch | |
resnet_output = self.resnet(image) | |
# Concatenate LSTM and ResNet outputs | |
merged = torch.cat((lstm_output, resnet_output), dim=1) | |
# Fully connected layers | |
output = self.relu(self.fc1(merged)) | |
output = self.fc2(output) | |
return output | |
def train_model(data_dir, output_dir="models/"): | |
# Create dataset | |
dataset = WatermelonDataset(data_dir) | |
n_samples = len(dataset) | |
# Split dataset | |
train_size = int(0.7 * n_samples) | |
val_size = int(0.2 * n_samples) | |
test_size = n_samples - train_size - val_size | |
train_dataset, val_dataset, test_dataset = torch.utils.data.random_split( | |
dataset, [train_size, val_size, test_size] | |
) | |
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | |
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False) | |
# Initialize model | |
model = WatermelonModel().to(device) | |
# Loss function and optimizer | |
criterion = torch.nn.MSELoss() | |
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) | |
# TensorBoard | |
writer = SummaryWriter("runs/") | |
global_step = 0 | |
print(f"\033[92mINFO\033[0m: Training model for {epochs} epochs") | |
print(f"\033[92mINFO\033[0m: Training samples: {len(train_dataset)}") | |
print(f"\033[92mINFO\033[0m: Validation samples: {len(val_dataset)}") | |
print(f"\033[92mINFO\033[0m: Test samples: {len(test_dataset)}") | |
print(f"\033[92mINFO\033[0m: Batch size: {batch_size}") | |
# Training loop | |
for epoch in range(epochs): | |
print(f"\033[92mINFO\033[0m: Training epoch ({epoch+1}/{epochs})") | |
model.train() | |
running_loss = 0.0 | |
for i, (mfcc, image, label) in enumerate(train_loader): | |
try: | |
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device) | |
optimizer.zero_grad() | |
output = model(mfcc, image) | |
label = label.view(-1, 1).float() | |
loss = criterion(output, label) | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() | |
writer.add_scalar("Training Loss", loss.item(), global_step) | |
global_step += 1 | |
if i % 10 == 0: | |
print(f"\033[92mINFO\033[0m: Batch {i}/{len(train_loader)}, Loss: {loss.item():.4f}") | |
except Exception as e: | |
print(f"\033[91mERR!\033[0m: Error in training batch {i}: {e}") | |
continue | |
# Validation phase | |
model.eval() | |
val_loss = 0.0 | |
with torch.no_grad(): | |
for i, (mfcc, image, label) in enumerate(val_loader): | |
try: | |
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device) | |
output = model(mfcc, image) | |
label = label.view(-1, 1).float() | |
loss = criterion(output, label) | |
val_loss += loss.item() | |
except Exception as e: | |
print(f"\033[91mERR!\033[0m: Error in validation batch {i}: {e}") | |
continue | |
avg_train_loss = running_loss / len(train_loader) if len(train_loader) > 0 else float('inf') | |
avg_val_loss = val_loss / len(val_loader) if len(val_loader) > 0 else float('inf') | |
# Record validation loss | |
writer.add_scalar("Validation Loss", avg_val_loss, epoch) | |
print( | |
f"Epoch [{epoch+1}/{epochs}], Training Loss: {avg_train_loss:.4f}, " | |
f"Validation Loss: {avg_val_loss:.4f}" | |
) | |
# Save model checkpoint | |
timestamp = time.strftime("%Y%m%d-%H%M%S") | |
model_path = os.path.join(output_dir, f"model_{epoch+1}_{timestamp}.pt") | |
torch.save(model.state_dict(), model_path) | |
print( | |
f"\033[92mINFO\033[0m: Model checkpoint epoch [{epoch+1}/{epochs}] saved: {model_path}" | |
) | |
# Save final model | |
final_model_path = os.path.join(output_dir, "watermelon_model_final.pt") | |
torch.save(model.state_dict(), final_model_path) | |
print(f"\033[92mINFO\033[0m: Final model saved: {final_model_path}") | |
print(f"\033[92mINFO\033[0m: Training complete") | |
return final_model_path | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser(description="Train the Watermelon Sweetness Prediction Model") | |
parser.add_argument( | |
"--data_dir", | |
type=str, | |
default="../cleaned", | |
help="Path to the cleaned dataset directory" | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="models/", | |
help="Directory to save model checkpoints and the final model" | |
) | |
args = parser.parse_args() | |
# Ensure output directory exists | |
os.makedirs(args.output_dir, exist_ok=True) | |
# Train the model | |
final_model_path = train_model(args.data_dir, args.output_dir) | |
print(f"\033[92mINFO\033[0m: Training completed successfully!") | |
print(f"\033[92mINFO\033[0m: Final model saved at: {final_model_path}") |