File size: 9,282 Bytes
5900417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import time
import torch
import torchaudio
import torchvision
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
import sys

# Add parent directory to path to import the preprocess functions
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from preprocess import process_audio_data, process_image_data

# Print library versions
print(f"\033[92mINFO\033[0m: PyTorch version: {torch.__version__}")
print(f"\033[92mINFO\033[0m: Torchaudio version: {torchaudio.__version__}")
print(f"\033[92mINFO\033[0m: Torchvision version: {torchvision.__version__}")

# Device selection
device = torch.device(
    "cuda"
    if torch.cuda.is_available()
    else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"\033[92mINFO\033[0m: Using device: {device}")

# Hyperparameters
batch_size = 16
epochs = 2
learning_rate = 0.0001

# Model save directory
os.makedirs("models/", exist_ok=True)


class WatermelonDataset(Dataset):
    def __init__(self, data_dir):
        self.data_dir = data_dir
        self.samples = []
        
        # Walk through the directory structure
        for sweetness_dir in os.listdir(data_dir):
            sweetness = float(sweetness_dir)
            sweetness_path = os.path.join(data_dir, sweetness_dir)
            
            if os.path.isdir(sweetness_path):
                for id_dir in os.listdir(sweetness_path):
                    id_path = os.path.join(sweetness_path, id_dir)
                    
                    if os.path.isdir(id_path):
                        audio_file = os.path.join(id_path, f"{id_dir}.wav")
                        image_file = os.path.join(id_path, f"{id_dir}.jpg")
                        
                        if os.path.exists(audio_file) and os.path.exists(image_file):
                            self.samples.append((audio_file, image_file, sweetness))
        
        print(f"\033[92mINFO\033[0m: Loaded {len(self.samples)} samples from {data_dir}")

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, idx):
        audio_path, image_path, label = self.samples[idx]
        
        # Load and process audio
        try:
            waveform, sample_rate = torchaudio.load(audio_path)
            mfcc = process_audio_data(waveform, sample_rate)
            
            # Load and process image
            image = torchvision.io.read_image(image_path)
            image = image.float()
            processed_image = process_image_data(image)
            
            return mfcc, processed_image, torch.tensor(label).float()
        except Exception as e:
            print(f"\033[91mERR!\033[0m: Error processing sample {idx}: {e}")
            # Return a fallback sample or skip this sample
            # For simplicity, we'll return the first sample again
            if idx == 0:  # Prevent infinite recursion
                raise e
            return self.__getitem__(0)


class WatermelonModel(torch.nn.Module):
    def __init__(self):
        super(WatermelonModel, self).__init__()

        # LSTM for audio features
        self.lstm = torch.nn.LSTM(
            input_size=376, hidden_size=64, num_layers=2, batch_first=True
        )
        self.lstm_fc = torch.nn.Linear(
            64, 128
        )  # Convert LSTM output to 128-dim for merging

        # ResNet50 for image features
        self.resnet = torchvision.models.resnet50(weights=torchvision.models.ResNet50_Weights.DEFAULT)
        self.resnet.fc = torch.nn.Linear(
            self.resnet.fc.in_features, 128
        )  # Convert ResNet output to 128-dim for merging

        # Fully connected layers for final prediction
        self.fc1 = torch.nn.Linear(256, 64)
        self.fc2 = torch.nn.Linear(64, 1)
        self.relu = torch.nn.ReLU()

    def forward(self, mfcc, image):
        # LSTM branch
        lstm_output, _ = self.lstm(mfcc)
        lstm_output = lstm_output[:, -1, :]  # Use the output of the last time step
        lstm_output = self.lstm_fc(lstm_output)

        # ResNet branch
        resnet_output = self.resnet(image)

        # Concatenate LSTM and ResNet outputs
        merged = torch.cat((lstm_output, resnet_output), dim=1)

        # Fully connected layers
        output = self.relu(self.fc1(merged))
        output = self.fc2(output)

        return output


def train_model(data_dir, output_dir="models/"):
    # Create dataset
    dataset = WatermelonDataset(data_dir)
    n_samples = len(dataset)

    # Split dataset
    train_size = int(0.7 * n_samples)
    val_size = int(0.2 * n_samples)
    test_size = n_samples - train_size - val_size

    train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(
        dataset, [train_size, val_size, test_size]
    )

    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)

    # Initialize model
    model = WatermelonModel().to(device)

    # Loss function and optimizer
    criterion = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

    # TensorBoard
    writer = SummaryWriter("runs/")
    global_step = 0

    print(f"\033[92mINFO\033[0m: Training model for {epochs} epochs")
    print(f"\033[92mINFO\033[0m: Training samples: {len(train_dataset)}")
    print(f"\033[92mINFO\033[0m: Validation samples: {len(val_dataset)}")
    print(f"\033[92mINFO\033[0m: Test samples: {len(test_dataset)}")
    print(f"\033[92mINFO\033[0m: Batch size: {batch_size}")

    # Training loop
    for epoch in range(epochs):
        print(f"\033[92mINFO\033[0m: Training epoch ({epoch+1}/{epochs})")

        model.train()
        running_loss = 0.0
        
        for i, (mfcc, image, label) in enumerate(train_loader):
            try:
                mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)

                optimizer.zero_grad()
                output = model(mfcc, image)
                label = label.view(-1, 1).float()
                loss = criterion(output, label)
                loss.backward()
                optimizer.step()

                running_loss += loss.item()
                writer.add_scalar("Training Loss", loss.item(), global_step)
                global_step += 1
                
                if i % 10 == 0:
                    print(f"\033[92mINFO\033[0m: Batch {i}/{len(train_loader)}, Loss: {loss.item():.4f}")
                    
            except Exception as e:
                print(f"\033[91mERR!\033[0m: Error in training batch {i}: {e}")
                continue

        # Validation phase
        model.eval()
        val_loss = 0.0
        with torch.no_grad():
            for i, (mfcc, image, label) in enumerate(val_loader):
                try:
                    mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
                    output = model(mfcc, image)
                    label = label.view(-1, 1).float()
                    loss = criterion(output, label)
                    val_loss += loss.item()
                except Exception as e:
                    print(f"\033[91mERR!\033[0m: Error in validation batch {i}: {e}")
                    continue

        avg_train_loss = running_loss / len(train_loader) if len(train_loader) > 0 else float('inf')
        avg_val_loss = val_loss / len(val_loader) if len(val_loader) > 0 else float('inf')
        
        # Record validation loss
        writer.add_scalar("Validation Loss", avg_val_loss, epoch)

        print(
            f"Epoch [{epoch+1}/{epochs}], Training Loss: {avg_train_loss:.4f}, "
            f"Validation Loss: {avg_val_loss:.4f}"
        )

        # Save model checkpoint
        timestamp = time.strftime("%Y%m%d-%H%M%S")
        model_path = os.path.join(output_dir, f"model_{epoch+1}_{timestamp}.pt")
        torch.save(model.state_dict(), model_path)

        print(
            f"\033[92mINFO\033[0m: Model checkpoint epoch [{epoch+1}/{epochs}] saved: {model_path}"
        )

    # Save final model
    final_model_path = os.path.join(output_dir, "watermelon_model_final.pt")
    torch.save(model.state_dict(), final_model_path)
    print(f"\033[92mINFO\033[0m: Final model saved: {final_model_path}")
    
    print(f"\033[92mINFO\033[0m: Training complete")
    return final_model_path


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="Train the Watermelon Sweetness Prediction Model")
    parser.add_argument(
        "--data_dir", 
        type=str, 
        default="../cleaned", 
        help="Path to the cleaned dataset directory"
    )
    parser.add_argument(
        "--output_dir", 
        type=str, 
        default="models/", 
        help="Directory to save model checkpoints and the final model"
    )
    
    args = parser.parse_args()
    
    # Ensure output directory exists
    os.makedirs(args.output_dir, exist_ok=True)
    
    # Train the model
    final_model_path = train_model(args.data_dir, args.output_dir)
    
    print(f"\033[92mINFO\033[0m: Training completed successfully!")
    print(f"\033[92mINFO\033[0m: Final model saved at: {final_model_path}")