Spaces:
Sleeping
Sleeping
import torch, torchaudio, torchvision | |
import os | |
import gradio as gr | |
import numpy as np | |
from preprocess import process_audio_data, process_image_data | |
from train import WatermelonModel | |
from infer import infer | |
def load_model(model_path): | |
global device | |
device = torch.device( | |
"cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
) | |
print(f"\033[92mINFO\033[0m: Using device: {device}") | |
# Check if the file exists | |
if not os.path.exists(model_path): | |
raise FileNotFoundError(f"Model file not found at {model_path}") | |
# Check if the file is empty or very small | |
file_size = os.path.getsize(model_path) | |
if file_size < 1000: # Less than 1KB is suspiciously small for a model | |
print(f"\033[93mWARNING\033[0m: Model file size is only {file_size} bytes, which is suspiciously small") | |
try: | |
model = WatermelonModel().to(device) | |
model.load_state_dict(torch.load(model_path, map_location=device)) | |
model.eval() | |
print(f"\033[92mINFO\033[0m: Loaded model from {model_path}") | |
return model | |
except RuntimeError as e: | |
if "failed finding central directory" in str(e): | |
print(f"\033[91mERROR\033[0m: The model file at {model_path} appears to be corrupted.") | |
print("This can happen if:") | |
print(" 1. The model saving process was interrupted") | |
print(" 2. The file was not properly downloaded") | |
print(" 3. The path points to a file that is not a valid PyTorch model") | |
print(f"File size: {file_size} bytes") | |
raise | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser(description="Watermelon sweetness predictor") | |
parser.add_argument("--model_path", type=str, default="./models/model_15_20250405-033557.pt", help="Path to the trained model") | |
args = parser.parse_args() | |
model = load_model(args.model_path) | |
def predict(audio, image): | |
try: | |
# Debug audio input | |
print(f"\033[92mDEBUG\033[0m: Audio input type: {type(audio)}") | |
print(f"\033[92mDEBUG\033[0m: Audio input value: {audio}") | |
# Handle different formats of audio input from Gradio | |
if audio is None: | |
return "Error: No audio provided. Please upload or record audio." | |
if isinstance(audio, tuple) and len(audio) >= 2: | |
sr, audio_data = audio[0], audio[-1] | |
print(f"\033[92mDEBUG\033[0m: Audio format: sr={sr}, audio_data shape={audio_data.shape if hasattr(audio_data, 'shape') else 'no shape'}") | |
elif isinstance(audio, tuple) and len(audio) == 1: | |
# Handle single element tuple | |
audio_data = audio[0] | |
sr = 44100 # Assume default sample rate | |
print(f"\033[92mDEBUG\033[0m: Single element audio tuple, using default sr={sr}") | |
elif isinstance(audio, np.ndarray): | |
# Handle direct numpy array | |
audio_data = audio | |
sr = 44100 # Assume default sample rate | |
print(f"\033[92mDEBUG\033[0m: Audio is numpy array, using default sr={sr}") | |
else: | |
return f"Error: Unexpected audio format: {type(audio)}" | |
# Ensure audio_data is correctly shaped | |
if isinstance(audio_data, np.ndarray): | |
# Make sure we have a 2D array | |
if len(audio_data.shape) == 1: | |
audio_data = np.expand_dims(audio_data, axis=0) | |
print(f"\033[92mDEBUG\033[0m: Reshaped 1D audio to 2D: {audio_data.shape}") | |
# If channels are the second dimension, transpose | |
if len(audio_data.shape) == 2 and audio_data.shape[0] > audio_data.shape[1]: | |
audio_data = np.transpose(audio_data) | |
print(f"\033[92mDEBUG\033[0m: Transposed audio shape to: {audio_data.shape}") | |
# Convert to tensor | |
audio_tensor = torch.tensor(audio_data).float() | |
print(f"\033[92mDEBUG\033[0m: Audio tensor shape: {audio_tensor.shape}") | |
# Process audio data and handle None case | |
mfcc = process_audio_data(audio_tensor, sr) | |
if mfcc is None: | |
return "Error: Failed to process audio data. Make sure your audio contains a clear tapping sound." | |
mfcc = mfcc.to(device) | |
print(f"\033[92mDEBUG\033[0m: MFCC shape: {mfcc.shape}") | |
# Debug image input | |
print(f"\033[92mDEBUG\033[0m: Image input type: {type(image)}") | |
print(f"\033[92mDEBUG\033[0m: Image shape: {image.shape if hasattr(image, 'shape') else 'No shape'}") | |
# Process image data and handle None case | |
if image is None: | |
return "Error: No image provided. Please upload an image." | |
# Handle different image formats | |
if isinstance(image, np.ndarray): | |
# Check if image is properly formatted (H, W, C) with 3 channels | |
if len(image.shape) == 3 and image.shape[2] == 3: | |
# Convert to tensor with shape (C, H, W) as expected by PyTorch | |
img = torch.tensor(image).float().permute(2, 0, 1) | |
print(f"\033[92mDEBUG\033[0m: Converted image to tensor with shape: {img.shape}") | |
elif len(image.shape) == 2: | |
# Grayscale image, expand to 3 channels | |
img = torch.tensor(image).float().unsqueeze(0).repeat(3, 1, 1) | |
print(f"\033[92mDEBUG\033[0m: Converted grayscale image to RGB tensor with shape: {img.shape}") | |
else: | |
return f"Error: Unexpected image shape: {image.shape}. Expected RGB or grayscale image." | |
else: | |
return f"Error: Unexpected image format: {type(image)}. Expected numpy array." | |
# Scale pixel values to [0, 1] if needed | |
if img.max() > 1.0: | |
img = img / 255.0 | |
print(f"\033[92mDEBUG\033[0m: Scaled image pixel values to range [0, 1]") | |
# Get image dimensions and check if they're reasonable | |
print(f"\033[92mDEBUG\033[0m: Final image tensor shape before processing: {img.shape}") | |
# Process image | |
try: | |
img_processed = process_image_data(img) | |
if img_processed is None: | |
return "Error: Failed to process image data. Make sure your image clearly shows a watermelon." | |
img_processed = img_processed.to(device) | |
print(f"\033[92mDEBUG\033[0m: Processed image shape: {img_processed.shape}") | |
except Exception as e: | |
print(f"\033[91mERROR\033[0m: Image processing error: {str(e)}") | |
return f"Error in image processing: {str(e)}" | |
# Run inference | |
try: | |
# Based on the error, it seems infer() expects file paths, not tensors | |
# Let's create temporary files for the processed data | |
temp_dir = os.path.join(os.getcwd(), "temp") | |
os.makedirs(temp_dir, exist_ok=True) | |
# Save the audio to a temporary file if infer expects a file path | |
temp_audio_path = os.path.join(temp_dir, "temp_audio.wav") | |
if not isinstance(audio, str) and isinstance(audio, tuple) and len(audio) >= 2: | |
# If we have the original audio data and sample rate | |
audio_array = audio[-1] | |
sr = audio[0] | |
# Check if the audio array is valid | |
if audio_array.size == 0: | |
return "Error: Audio data is empty. Please record a longer audio clip." | |
# Get the duration of the audio | |
duration = audio_array.shape[-1] / sr | |
print(f"\033[92mDEBUG\033[0m: Audio duration: {duration:.2f} seconds") | |
# Check if we have at least 1 second of audio - but don't reject, just pad if needed | |
min_duration = 1.0 # minimum 1 second of audio | |
if duration < min_duration: | |
print(f"\033[93mWARNING\033[0m: Audio is shorter than {min_duration} seconds. Padding will be applied.") | |
# Calculate samples needed to reach minimum duration | |
samples_needed = int(min_duration * sr) - audio_array.shape[-1] | |
# Pad with zeros | |
padding = np.zeros((audio_array.shape[0], samples_needed), dtype=audio_array.dtype) | |
audio_array = np.concatenate([audio_array, padding], axis=1) | |
print(f"\033[92mDEBUG\033[0m: Padded audio to shape: {audio_array.shape}") | |
# Make sure audio has 2 dimensions | |
if len(audio_array.shape) == 1: | |
audio_array = np.expand_dims(audio_array, axis=0) | |
print(f"\033[92mDEBUG\033[0m: Audio array shape before saving: {audio_array.shape}, sr: {sr}") | |
# Make sure it's in the right format for torchaudio.save | |
audio_tensor = torch.tensor(audio_array).float() | |
if audio_tensor.dim() == 1: | |
audio_tensor = audio_tensor.unsqueeze(0) | |
torchaudio.save(temp_audio_path, audio_tensor, sr) | |
print(f"\033[92mDEBUG\033[0m: Saved temporary audio file to {temp_audio_path}") | |
# Let's also process the audio here to verify it works | |
test_mfcc = process_audio_data(audio_tensor, sr) | |
if test_mfcc is None: | |
return "Error: Unable to process the audio. Please try recording a different audio sample." | |
else: | |
print(f"\033[92mDEBUG\033[0m: Audio pre-check passed. MFCC shape: {test_mfcc.shape}") | |
audio_path = temp_audio_path | |
else: | |
# If we don't have a valid path, return an error | |
return "Error: Cannot process audio for inference. Invalid audio format." | |
# Save the image to a temporary file if infer expects a file path | |
temp_image_path = os.path.join(temp_dir, "temp_image.jpg") | |
if isinstance(image, np.ndarray): | |
import cv2 | |
cv2.imwrite(temp_image_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) | |
print(f"\033[92mDEBUG\033[0m: Saved temporary image file to {temp_image_path}") | |
image_path = temp_image_path | |
else: | |
# If we don't have a valid image, return an error | |
return "Error: Cannot process image for inference. Invalid image format." | |
# Create a modified version of infer that handles None returns | |
def safe_infer(audio_path, image_path, model, device): | |
try: | |
return infer(audio_path, image_path, model, device) | |
except Exception as e: | |
print(f"\033[91mERROR\033[0m: Error in infer function: {str(e)}") | |
# Try a more direct approach | |
try: | |
# Load audio and process | |
audio, sr = torchaudio.load(audio_path) | |
mfcc = process_audio_data(audio, sr) | |
if mfcc is None: | |
raise ValueError("Audio processing failed - MFCC is None") | |
mfcc = mfcc.to(device) | |
# Load image and process | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
image_tensor = torch.tensor(image).float().permute(2, 0, 1) / 255.0 | |
img_processed = process_image_data(image_tensor) | |
if img_processed is None: | |
raise ValueError("Image processing failed - processed image is None") | |
img_processed = img_processed.to(device) | |
# Run model inference | |
with torch.no_grad(): | |
prediction = model(mfcc, img_processed) | |
return prediction | |
except Exception as e2: | |
print(f"\033[91mERROR\033[0m: Fallback inference also failed: {str(e2)}") | |
raise | |
# Call our safer version | |
print(f"\033[92mDEBUG\033[0m: Calling safe_infer with audio_path={audio_path}, image_path={image_path}") | |
sweetness = safe_infer(audio_path, image_path, model, device) | |
if sweetness is None: | |
return "Error: The model was unable to make a prediction. Please try with different inputs." | |
print(f"\033[92mDEBUG\033[0m: Inference result: {sweetness.item()}") | |
return f"Predicted Sweetness: {sweetness.item():.2f}/10" | |
except Exception as e: | |
import traceback | |
print(f"\033[91mERROR\033[0m: Inference failed: {str(e)}") | |
print(f"\033[91mTraceback\033[0m: {traceback.format_exc()}") | |
return f"Error during inference: {str(e)}" | |
except Exception as e: | |
import traceback | |
print(f"\033[91mERROR\033[0m: Prediction failed: {str(e)}") | |
print(f"\033[91mTraceback\033[0m: {traceback.format_exc()}") | |
return f"Error processing input: {str(e)}" | |
audio_input = gr.Audio(label="Upload or Record Audio") | |
image_input = gr.Image(label="Upload or Capture Image") | |
output = gr.Textbox(label="Predicted Sweetness") | |
interface = gr.Interface( | |
fn=predict, | |
inputs=[audio_input, image_input], | |
outputs=output, | |
title="Watermelon Sweetness Predictor", | |
description="Upload an audio file and an image to predict the sweetness of a watermelon." | |
) | |
try: | |
interface.launch(share=True) # Enable sharing to avoid localhost access issues | |
except Exception as e: | |
print(f"\033[91mERROR\033[0m: Failed to launch interface: {e}") | |
print("\033[93mTIP\033[0m: If you're running in a remote environment or container, try setting additional parameters:") | |
print(" interface.launch(server_name='0.0.0.0', share=True)") |