watermelon / app.py
Xalphinions's picture
Upload folder using huggingface_hub
86ab2cb verified
raw
history blame
15.3 kB
import torch, torchaudio, torchvision
import os
import gradio as gr
import numpy as np
from preprocess import process_audio_data, process_image_data
from train import WatermelonModel
from infer import infer
def load_model(model_path):
global device
device = torch.device(
"cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"\033[92mINFO\033[0m: Using device: {device}")
# Check if the file exists
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found at {model_path}")
# Check if the file is empty or very small
file_size = os.path.getsize(model_path)
if file_size < 1000: # Less than 1KB is suspiciously small for a model
print(f"\033[93mWARNING\033[0m: Model file size is only {file_size} bytes, which is suspiciously small")
try:
model = WatermelonModel().to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
print(f"\033[92mINFO\033[0m: Loaded model from {model_path}")
return model
except RuntimeError as e:
if "failed finding central directory" in str(e):
print(f"\033[91mERROR\033[0m: The model file at {model_path} appears to be corrupted.")
print("This can happen if:")
print(" 1. The model saving process was interrupted")
print(" 2. The file was not properly downloaded")
print(" 3. The path points to a file that is not a valid PyTorch model")
print(f"File size: {file_size} bytes")
raise
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Watermelon sweetness predictor")
parser.add_argument("--model_path", type=str, default="./models/model_15_20250405-033557.pt", help="Path to the trained model")
args = parser.parse_args()
model = load_model(args.model_path)
def predict(audio, image):
try:
# Debug audio input
print(f"\033[92mDEBUG\033[0m: Audio input type: {type(audio)}")
print(f"\033[92mDEBUG\033[0m: Audio input value: {audio}")
# Handle different formats of audio input from Gradio
if audio is None:
return "Error: No audio provided. Please upload or record audio."
if isinstance(audio, tuple) and len(audio) >= 2:
sr, audio_data = audio[0], audio[-1]
print(f"\033[92mDEBUG\033[0m: Audio format: sr={sr}, audio_data shape={audio_data.shape if hasattr(audio_data, 'shape') else 'no shape'}")
elif isinstance(audio, tuple) and len(audio) == 1:
# Handle single element tuple
audio_data = audio[0]
sr = 44100 # Assume default sample rate
print(f"\033[92mDEBUG\033[0m: Single element audio tuple, using default sr={sr}")
elif isinstance(audio, np.ndarray):
# Handle direct numpy array
audio_data = audio
sr = 44100 # Assume default sample rate
print(f"\033[92mDEBUG\033[0m: Audio is numpy array, using default sr={sr}")
else:
return f"Error: Unexpected audio format: {type(audio)}"
# Ensure audio_data is correctly shaped
if isinstance(audio_data, np.ndarray):
# Make sure we have a 2D array
if len(audio_data.shape) == 1:
audio_data = np.expand_dims(audio_data, axis=0)
print(f"\033[92mDEBUG\033[0m: Reshaped 1D audio to 2D: {audio_data.shape}")
# If channels are the second dimension, transpose
if len(audio_data.shape) == 2 and audio_data.shape[0] > audio_data.shape[1]:
audio_data = np.transpose(audio_data)
print(f"\033[92mDEBUG\033[0m: Transposed audio shape to: {audio_data.shape}")
# Convert to tensor
audio_tensor = torch.tensor(audio_data).float()
print(f"\033[92mDEBUG\033[0m: Audio tensor shape: {audio_tensor.shape}")
# Process audio data and handle None case
mfcc = process_audio_data(audio_tensor, sr)
if mfcc is None:
return "Error: Failed to process audio data. Make sure your audio contains a clear tapping sound."
mfcc = mfcc.to(device)
print(f"\033[92mDEBUG\033[0m: MFCC shape: {mfcc.shape}")
# Debug image input
print(f"\033[92mDEBUG\033[0m: Image input type: {type(image)}")
print(f"\033[92mDEBUG\033[0m: Image shape: {image.shape if hasattr(image, 'shape') else 'No shape'}")
# Process image data and handle None case
if image is None:
return "Error: No image provided. Please upload an image."
# Handle different image formats
if isinstance(image, np.ndarray):
# Check if image is properly formatted (H, W, C) with 3 channels
if len(image.shape) == 3 and image.shape[2] == 3:
# Convert to tensor with shape (C, H, W) as expected by PyTorch
img = torch.tensor(image).float().permute(2, 0, 1)
print(f"\033[92mDEBUG\033[0m: Converted image to tensor with shape: {img.shape}")
elif len(image.shape) == 2:
# Grayscale image, expand to 3 channels
img = torch.tensor(image).float().unsqueeze(0).repeat(3, 1, 1)
print(f"\033[92mDEBUG\033[0m: Converted grayscale image to RGB tensor with shape: {img.shape}")
else:
return f"Error: Unexpected image shape: {image.shape}. Expected RGB or grayscale image."
else:
return f"Error: Unexpected image format: {type(image)}. Expected numpy array."
# Scale pixel values to [0, 1] if needed
if img.max() > 1.0:
img = img / 255.0
print(f"\033[92mDEBUG\033[0m: Scaled image pixel values to range [0, 1]")
# Get image dimensions and check if they're reasonable
print(f"\033[92mDEBUG\033[0m: Final image tensor shape before processing: {img.shape}")
# Process image
try:
img_processed = process_image_data(img)
if img_processed is None:
return "Error: Failed to process image data. Make sure your image clearly shows a watermelon."
img_processed = img_processed.to(device)
print(f"\033[92mDEBUG\033[0m: Processed image shape: {img_processed.shape}")
except Exception as e:
print(f"\033[91mERROR\033[0m: Image processing error: {str(e)}")
return f"Error in image processing: {str(e)}"
# Run inference
try:
# Based on the error, it seems infer() expects file paths, not tensors
# Let's create temporary files for the processed data
temp_dir = os.path.join(os.getcwd(), "temp")
os.makedirs(temp_dir, exist_ok=True)
# Save the audio to a temporary file if infer expects a file path
temp_audio_path = os.path.join(temp_dir, "temp_audio.wav")
if not isinstance(audio, str) and isinstance(audio, tuple) and len(audio) >= 2:
# If we have the original audio data and sample rate
audio_array = audio[-1]
sr = audio[0]
# Check if the audio array is valid
if audio_array.size == 0:
return "Error: Audio data is empty. Please record a longer audio clip."
# Get the duration of the audio
duration = audio_array.shape[-1] / sr
print(f"\033[92mDEBUG\033[0m: Audio duration: {duration:.2f} seconds")
# Check if we have at least 1 second of audio - but don't reject, just pad if needed
min_duration = 1.0 # minimum 1 second of audio
if duration < min_duration:
print(f"\033[93mWARNING\033[0m: Audio is shorter than {min_duration} seconds. Padding will be applied.")
# Calculate samples needed to reach minimum duration
samples_needed = int(min_duration * sr) - audio_array.shape[-1]
# Pad with zeros
padding = np.zeros((audio_array.shape[0], samples_needed), dtype=audio_array.dtype)
audio_array = np.concatenate([audio_array, padding], axis=1)
print(f"\033[92mDEBUG\033[0m: Padded audio to shape: {audio_array.shape}")
# Make sure audio has 2 dimensions
if len(audio_array.shape) == 1:
audio_array = np.expand_dims(audio_array, axis=0)
print(f"\033[92mDEBUG\033[0m: Audio array shape before saving: {audio_array.shape}, sr: {sr}")
# Make sure it's in the right format for torchaudio.save
audio_tensor = torch.tensor(audio_array).float()
if audio_tensor.dim() == 1:
audio_tensor = audio_tensor.unsqueeze(0)
torchaudio.save(temp_audio_path, audio_tensor, sr)
print(f"\033[92mDEBUG\033[0m: Saved temporary audio file to {temp_audio_path}")
# Let's also process the audio here to verify it works
test_mfcc = process_audio_data(audio_tensor, sr)
if test_mfcc is None:
return "Error: Unable to process the audio. Please try recording a different audio sample."
else:
print(f"\033[92mDEBUG\033[0m: Audio pre-check passed. MFCC shape: {test_mfcc.shape}")
audio_path = temp_audio_path
else:
# If we don't have a valid path, return an error
return "Error: Cannot process audio for inference. Invalid audio format."
# Save the image to a temporary file if infer expects a file path
temp_image_path = os.path.join(temp_dir, "temp_image.jpg")
if isinstance(image, np.ndarray):
import cv2
cv2.imwrite(temp_image_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
print(f"\033[92mDEBUG\033[0m: Saved temporary image file to {temp_image_path}")
image_path = temp_image_path
else:
# If we don't have a valid image, return an error
return "Error: Cannot process image for inference. Invalid image format."
# Create a modified version of infer that handles None returns
def safe_infer(audio_path, image_path, model, device):
try:
return infer(audio_path, image_path, model, device)
except Exception as e:
print(f"\033[91mERROR\033[0m: Error in infer function: {str(e)}")
# Try a more direct approach
try:
# Load audio and process
audio, sr = torchaudio.load(audio_path)
mfcc = process_audio_data(audio, sr)
if mfcc is None:
raise ValueError("Audio processing failed - MFCC is None")
mfcc = mfcc.to(device)
# Load image and process
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_tensor = torch.tensor(image).float().permute(2, 0, 1) / 255.0
img_processed = process_image_data(image_tensor)
if img_processed is None:
raise ValueError("Image processing failed - processed image is None")
img_processed = img_processed.to(device)
# Run model inference
with torch.no_grad():
prediction = model(mfcc, img_processed)
return prediction
except Exception as e2:
print(f"\033[91mERROR\033[0m: Fallback inference also failed: {str(e2)}")
raise
# Call our safer version
print(f"\033[92mDEBUG\033[0m: Calling safe_infer with audio_path={audio_path}, image_path={image_path}")
sweetness = safe_infer(audio_path, image_path, model, device)
if sweetness is None:
return "Error: The model was unable to make a prediction. Please try with different inputs."
print(f"\033[92mDEBUG\033[0m: Inference result: {sweetness.item()}")
return f"Predicted Sweetness: {sweetness.item():.2f}/10"
except Exception as e:
import traceback
print(f"\033[91mERROR\033[0m: Inference failed: {str(e)}")
print(f"\033[91mTraceback\033[0m: {traceback.format_exc()}")
return f"Error during inference: {str(e)}"
except Exception as e:
import traceback
print(f"\033[91mERROR\033[0m: Prediction failed: {str(e)}")
print(f"\033[91mTraceback\033[0m: {traceback.format_exc()}")
return f"Error processing input: {str(e)}"
audio_input = gr.Audio(label="Upload or Record Audio")
image_input = gr.Image(label="Upload or Capture Image")
output = gr.Textbox(label="Predicted Sweetness")
interface = gr.Interface(
fn=predict,
inputs=[audio_input, image_input],
outputs=output,
title="Watermelon Sweetness Predictor",
description="Upload an audio file and an image to predict the sweetness of a watermelon."
)
try:
interface.launch(share=True) # Enable sharing to avoid localhost access issues
except Exception as e:
print(f"\033[91mERROR\033[0m: Failed to launch interface: {e}")
print("\033[93mTIP\033[0m: If you're running in a remote environment or container, try setting additional parameters:")
print(" interface.launch(server_name='0.0.0.0', share=True)")