PEEB / app.py
anhng8's picture
Update app.py
006180e verified
raw
history blame
20.4 kB
import os
import io
import torch
import json
import base64
import gradio as gr
import numpy as np
from pathlib import Path
from PIL import Image
from plots import get_pre_define_colors
from utils.load_model import load_xclip
from utils.predict import xclip_pred
#! Huggingface does not allow load model to main process, so we need to load the model when needed, it may not help in improve the speed of the app.
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Not at Huggingface demo, load model to main process.")
XCLIP, OWLVIT_PRECESSOR = load_xclip(DEVICE)
print(f"Device: {DEVICE}")
XCLIP_DESC_PATH = "data/jsons/bs_cub_desc.json"
XCLIP_DESC = json.load(open(XCLIP_DESC_PATH, "r"))
IMAGES_FOLDER = "data/images"
# XCLIP_RESULTS = json.load(open("data/jsons/xclip_org.json", "r"))
IMAGE2GT = json.load(open("data/jsons/image2gt.json", 'r'))
CUB_DESC_EMBEDS = torch.load('data/text_embeddings/cub_200_desc.pt')
CUB_IDX2NAME = json.load(open('data/jsons/cub_desc_idx2name.json', 'r'))
CUB_IDX2NAME = {int(k): v for k, v in CUB_IDX2NAME.items()}
IMAGE_FILE_LIST = json.load(open("data/jsons/file_list.json", "r"))
IMAGE_GALLERY = [Image.open(os.path.join(IMAGES_FOLDER, 'org', file_name)).convert('RGB') for file_name in IMAGE_FILE_LIST]
ORG_PART_ORDER = ['back', 'beak', 'belly', 'breast', 'crown', 'forehead', 'eyes', 'legs', 'wings', 'nape', 'tail', 'throat']
ORDERED_PARTS = ['crown', 'forehead', 'nape', 'eyes', 'beak', 'throat', 'breast', 'belly', 'back', 'wings', 'legs', 'tail']
COLORS = get_pre_define_colors(12, cmap_set=['Set2', 'tab10'])
SACHIT_COLOR = "#ADD8E6"
# CUB_BOXES = json.load(open("data/jsons/cub_boxes_owlvit_large.json", "r"))
VISIBILITY_DICT = json.load(open("data/jsons/cub_vis_dict_binary.json", 'r'))
VISIBILITY_DICT['Eastern_Bluebird.jpg'] = dict(zip(ORDERED_PARTS, [True]*12))
# --- Image related functions ---
def img_to_base64(img):
img_pil = Image.fromarray(img) if isinstance(img, np.ndarray) else img
buffered = io.BytesIO()
img_pil.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode()
def create_blank_image(width=500, height=500, color=(255, 255, 255)):
"""Create a blank image of the given size and color."""
return np.array(Image.new("RGB", (width, height), color))
# Convert RGB colors to hex
def rgb_to_hex(rgb):
return f"#{''.join(f'{x:02x}' for x in rgb)}"
def load_part_images(file_name: str) -> dict:
part_images = {}
# start_time = time.time()
for part_name in ORDERED_PARTS:
base_name = Path(file_name).stem
part_image_path = os.path.join(IMAGES_FOLDER, "boxes", f"{base_name}_{part_name}.jpg")
if not Path(part_image_path).exists():
continue
image = np.array(Image.open(part_image_path))
part_images[part_name] = img_to_base64(image)
# print(f"Time cost to load 12 images: {time.time() - start_time}")
# This takes less than 0.01 seconds. So the loading time is not the bottleneck.
return part_images
def generate_xclip_explanations(result_dict:dict, visibility: dict, part_mask: dict = dict(zip(ORDERED_PARTS, [1]*12))):
"""
The result_dict needs three keys: 'descriptions', 'pred_scores', 'file_name'
descriptions: {part_name1: desc_1, part_name2: desc_2, ...}
pred_scores: {part_name1: score_1, part_name2: score_2, ...}
file_name: str
"""
descriptions = result_dict['descriptions']
image_name = result_dict['file_name']
part_images = PART_IMAGES_DICT[image_name]
MAX_LENGTH = 50
exp_length = 400
fontsize = 15
# Start the SVG inside a div
svg_parts = [f'<div style="width: {exp_length}px; height: 450px; background-color: white;">',
"<svg width=\"100%\" height=\"100%\">"]
# Add a row for each visible bird part
y_offset = 0
for part in ORDERED_PARTS:
if visibility[part] and part_mask[part]:
# Calculate the length of the bar (scaled to fit within the SVG)
part_score = max(result_dict['pred_scores'][part], 0)
bar_length = part_score * exp_length
# Modify the overlay image's opacity on mouseover and mouseout
mouseover_action1 = f"document.getElementById('overlayImage').src = 'data:image/jpeg;base64,{part_images[part]}'; document.getElementById('overlayImage').style.opacity = 1;"
mouseout_action1 = "document.getElementById('overlayImage').style.opacity = 0;"
combined_mouseover = f"javascript: {mouseover_action1};"
combined_mouseout = f"javascript: {mouseout_action1};"
# Add the description
num_lines = len(descriptions[part]) // MAX_LENGTH + 1
for line in range(num_lines):
desc_line = descriptions[part][line*MAX_LENGTH:(line+1)*MAX_LENGTH]
y_offset += fontsize
svg_parts.append(f"""
<text x="0" y="{y_offset}" font-size="{fontsize}"
onmouseover="{combined_mouseover}"
onmouseout="{combined_mouseout}">
{desc_line}
</text>
""")
# Add the bars
svg_parts.append(f"""
<rect x="0" y="{y_offset +3}" width="{bar_length}" height="{fontsize*0.7}" fill="{PART_COLORS[part]}"
onmouseover="{combined_mouseover}"
onmouseout="{combined_mouseout}">
</rect>
""")
# Add the scores
svg_parts.append(f'<text x="{exp_length - 50}" y="{y_offset+fontsize+3}" font-size="{fontsize}" fill="{PART_COLORS[part]}">{part_score:.2f}</text>')
y_offset += fontsize + 3
svg_parts.extend(("</svg>", "</div>"))
# Join everything into a single string
html = "".join(svg_parts)
return html
def generate_sachit_explanations(result_dict:dict):
descriptions = result_dict['descriptions']
scores = result_dict['scores']
MAX_LENGTH = 50
exp_length = 400
fontsize = 15
descriptions = zip(scores, descriptions)
descriptions = sorted(descriptions, key=lambda x: x[0], reverse=True)
# Start the SVG inside a div
svg_parts = [f'<div style="width: {exp_length}px; height: 450px; background-color: white;">',
"<svg width=\"100%\" height=\"100%\">"]
# Add a row for each visible bird part
y_offset = 0
for score, desc in descriptions:
# Calculate the length of the bar (scaled to fit within the SVG)
part_score = max(score, 0)
bar_length = part_score * exp_length
# Split the description into two lines if it's too long
num_lines = len(desc) // MAX_LENGTH + 1
for line in range(num_lines):
desc_line = desc[line*MAX_LENGTH:(line+1)*MAX_LENGTH]
y_offset += fontsize
svg_parts.append(f"""
<text x="0" y="{y_offset}" font-size="{fontsize}" fill="black">
{desc_line}
</text>
""")
# Add the bar
svg_parts.append(f"""
<rect x="0" y="{y_offset+3}" width="{bar_length}" height="{fontsize*0.7}" fill="{SACHIT_COLOR}">
</rect>
""")
# Add the score
svg_parts.append(f'<text x="{exp_length - 50}" y="{y_offset+fontsize+3}" font-size="fontsize" fill="{SACHIT_COLOR}">{part_score:.2f}</text>') # Added fill color
y_offset += fontsize + 3
svg_parts.extend(("</svg>", "</div>"))
# Join everything into a single string
html = "".join(svg_parts)
return html
# --- Constants created by the functions above ---
BLANK_OVERLAY = img_to_base64(create_blank_image())
PART_COLORS = {part: rgb_to_hex(COLORS[i]) for i, part in enumerate(ORDERED_PARTS)}
blank_image = np.array(Image.open('data/images/final.png').convert('RGB'))
PART_IMAGES_DICT = {file_name: load_part_images(file_name) for file_name in IMAGE_FILE_LIST}
# --- Gradio Functions ---
def update_selected_image(event: gr.SelectData):
image_height = 400
index = event.index
image_name = IMAGE_FILE_LIST[index]
current_image.state = image_name
org_image = Image.open(os.path.join(IMAGES_FOLDER, 'org', image_name)).convert('RGB')
img_base64 = f"""
<div style="position: relative; height: {image_height}px; display: inline-block;">
<img id="birdImage" src="data:image/jpeg;base64,{img_to_base64(org_image)}" style="height: {image_height}px; width: auto;">
<img id="overlayImage" src="data:image/jpeg;base64,{BLANK_OVERLAY}" style="position:absolute; top:0; left:0; width:auto; height: {image_height}px; opacity: 0;">
</div>
"""
gt_label = IMAGE2GT[image_name]
gt_class.state = gt_label
# --- for initial value only ---
out_dict = xclip_pred(new_desc=None,
new_part_mask=None,
new_class=None,
org_desc=XCLIP_DESC_PATH,
image=Image.open(os.path.join(IMAGES_FOLDER, 'org', current_image.state)).convert('RGB'),
model=XCLIP,
owlvit_processor=OWLVIT_PRECESSOR,
device=DEVICE,
image_name=current_image.state,
cub_embeds=CUB_DESC_EMBEDS,
cub_idx2name=CUB_IDX2NAME,
descriptors=XCLIP_DESC)
xclip_label = out_dict['pred_class']
clip_pred_scores = out_dict['pred_score']
xclip_part_scores = out_dict['pred_desc_scores']
result_dict = {'descriptions': dict(zip(ORG_PART_ORDER, out_dict["descriptions"])), 'pred_scores': xclip_part_scores, 'file_name': current_image.state}
xclip_exp = generate_xclip_explanations(result_dict, VISIBILITY_DICT[current_image.state], part_mask=dict(zip(ORDERED_PARTS, [1]*12)))
# --- end of intial value ---
xclip_color = "green" if xclip_label.strip() == gt_label.strip() else "red"
xclip_pred_markdown = f"""
### <span style='color:{xclip_color}'>{xclip_label} &nbsp;&nbsp;&nbsp; {clip_pred_scores:.4f}</span>
"""
gt_label = f"""
## {gt_label}
"""
current_predicted_class.state = xclip_label
# Populate the textbox with current descriptions
custom_class_name = "class name: custom"
descs = XCLIP_DESC[xclip_label]
descs = {k: descs[i] for i, k in enumerate(ORG_PART_ORDER)}
descs = {k: descs[k] for k in ORDERED_PARTS}
custom_text = [custom_class_name] + list(descs.values())
descriptions = ";\n".join(custom_text)
# textbox = gr.Textbox.update(value=descriptions, lines=12, visible=True, label="XCLIP descriptions", interactive=True, info='Please use ";" to separate the descriptions for each part, and keep the format of {part name}: {descriptions}', show_label=False)
textbox = gr.Textbox(value=descriptions,
lines=12,
visible=True,
label="XCLIP descriptions",
interactive=True,
info='Please use ";" to separate the descriptions for each part, and keep the format of {part name}: {descriptions}',
show_label=False)
# modified_exp = gr.HTML().update(value="", visible=True)
return gt_label, img_base64, xclip_pred_markdown, xclip_exp, current_image, textbox
def on_edit_button_click_xclip():
# empty_exp = gr.HTML.update(visible=False)
empty_exp = gr.HTML(visible=False)
# Populate the textbox with current descriptions
descs = XCLIP_DESC[current_predicted_class.state]
descs = {k: descs[i] for i, k in enumerate(ORG_PART_ORDER)}
descs = {k: descs[k] for k in ORDERED_PARTS}
custom_text = ["class name: custom"] + list(descs.values())
descriptions = ";\n".join(custom_text)
# textbox = gr.Textbox.update(value=descriptions, lines=12, visible=True, label="XCLIP descriptions", interactive=True, info='Please use ";" to separate the descriptions for each part, and keep the format of {part name}: {descriptions}', show_label=False)
textbox = gr.Textbox(value=descriptions,
lines=12,
visible=True,
label="XCLIP descriptions",
interactive=True,
info='Please use ";" to separate the descriptions for each part, and keep the format of {part name}: {descriptions}',
show_label=False)
return textbox, empty_exp
def convert_input_text_to_xclip_format(textbox_input: str):
# Split the descriptions by newline to get individual descriptions for each part
descriptions_list = textbox_input.split(";\n")
# the first line should be "class name: xxx"
class_name_line = descriptions_list[0]
new_class_name = class_name_line.split(":")[1].strip()
descriptions_list = descriptions_list[1:]
# construct descripion dict with part name as key
descriptions_dict = {}
for desc in descriptions_list:
if desc.strip() == "":
continue
part_name, _ = desc.split(":")
descriptions_dict[part_name.strip()] = desc
# fill with empty string if the part is not in the descriptions
part_mask = {}
for part in ORDERED_PARTS:
if part not in descriptions_dict:
descriptions_dict[part] = ""
part_mask[part] = 0
else:
part_mask[part] = 1
return descriptions_dict, part_mask, new_class_name
def on_predict_button_click_xclip(textbox_input: str):
descriptions_dict, part_mask, new_class_name = convert_input_text_to_xclip_format(textbox_input)
# Get the new predictions and explanations
out_dict = xclip_pred(new_desc=descriptions_dict,
new_part_mask=part_mask,
new_class=new_class_name,
org_desc=XCLIP_DESC_PATH,
image=Image.open(os.path.join(IMAGES_FOLDER, 'org', current_image.state)).convert('RGB'),
model=XCLIP,
owlvit_processor=OWLVIT_PRECESSOR,
device=DEVICE,
image_name=current_image.state,
cub_embeds=CUB_DESC_EMBEDS,
cub_idx2name=CUB_IDX2NAME,
descriptors=XCLIP_DESC)
xclip_label = out_dict['pred_class']
xclip_pred_score = out_dict['pred_score']
xclip_part_scores = out_dict['pred_desc_scores']
custom_label = out_dict['modified_class']
custom_pred_score = out_dict['modified_score']
custom_part_scores = out_dict['modified_desc_scores']
# construct a result dict to generate xclip explanations
result_dict = {'descriptions': dict(zip(ORG_PART_ORDER, out_dict["descriptions"])), 'pred_scores': xclip_part_scores, 'file_name': current_image.state}
xclip_explanation = generate_xclip_explanations(result_dict, VISIBILITY_DICT[current_image.state], part_mask)
modified_result_dict = {'descriptions': dict(zip(ORG_PART_ORDER, out_dict["modified_descriptions"])), 'pred_scores': custom_part_scores, 'file_name': current_image.state}
modified_explanation = generate_xclip_explanations(modified_result_dict, VISIBILITY_DICT[current_image.state], part_mask)
xclip_color = "green" if xclip_label.strip() == gt_class.state.strip() else "red"
xclip_pred_markdown = f"""
### <span style='color:{xclip_color}'> {xclip_label} &nbsp;&nbsp;&nbsp; {xclip_pred_score:.4f}</span>
"""
custom_color = "green" if custom_label.strip() == gt_class.state.strip() else "red"
custom_pred_markdown = f"""
### <span style='color:{custom_color}'> {custom_label} &nbsp;&nbsp;&nbsp; {custom_pred_score:.4f}</span>
"""
# textbox = gr.Textbox.update(visible=False)
textbox = gr.Textbox(visible=False)
# return textbox, xclip_pred_markdown, xclip_explanation, custom_pred_markdown, modified_explanation
# modified_exp = gr.HTML().update(value=modified_explanation, visible=True)
modified_exp = gr.HTML(value=modified_explanation, visible=True)
return textbox, xclip_pred_markdown, xclip_explanation, custom_pred_markdown, modified_exp
custom_css = """
html, body {
margin: 0;
padding: 0;
}
#container {
position: relative;
width: 400px;
height: 400px;
border: 1px solid #000;
margin: 0 auto; /* This will center the container horizontally */
}
#canvas {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
object-fit: cover;
}
"""
# Define the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, title="PEEB") as demo:
current_image = gr.State("")
current_predicted_class = gr.State("")
gt_class = gr.State("")
with gr.Column():
title_text = gr.Markdown("# A classifier with Part-based Explainable and Editable Bottleneck (PEEB) | Demo")
gr.Markdown("Here is a PEEB classifier pre-trained on Bird-11K and finetuned on CUB-200 (see our [NAACL 2024 paper](https://arxiv.org/abs/2403.05297) and [code](https://github.com/anguyen8/peeb/tree/inspect_ddp)).\n The demo shows how one runs PEEB on an existing image and edit descriptors to modify the classifier (without any re-training).")
gr.Markdown(
"""
Steps:
1. **Select an image**. Then, PEEB will show its grounded explanations and the top-1 predicted label with associated softmax confidence score.
2. **Hover mouse over text descriptors** to see the corresponding region used to match to each text descriptor.
3. **Edit the text under [Custom Descriptions]()** which correspond to one extra, new class (i.e. 200+1 = 201). Further editing will overwrite this class' descriptors.
4. **Click on Predict** to see the grounded explanations and the top-1 label for the newly modified CUB-201 classifier.
"""
)
# display the gallery of images
with gr.Column():
gr.Markdown("## Select an image to start!")
image_gallery = gr.Gallery(value=IMAGE_GALLERY, label=None, preview=False, allow_preview=False, columns=10, height=250)
gr.Markdown("### Custom descriptions: \n The first row should be **class name: {some name};**, the name of your 201th class. \n For the 12 part descriptors, please use **;** to separate the descriptions for each part, and use the format **{part name}: {descriptions}**. \n Note: you can delete a row for some part (e.g. *nape*) completely and that part will be removed from all 201 classes in the classifier.")
with gr.Row():
with gr.Column():
image_label = gr.Markdown("### Class Name")
org_image = gr.HTML()
with gr.Column():
with gr.Row():
# xclip_predict_button = gr.Button(label="Predict", value="Predict")
xclip_predict_button = gr.Button(value="Predict")
xclip_pred_label = gr.Markdown("### PEEB:")
xclip_explanation = gr.HTML()
with gr.Column():
# xclip_edit_button = gr.Button(label="Edit", value="Reset Descriptions")
xclip_edit_button = gr.Button(value="Reset Descriptions")
custom_pred_label = gr.Markdown(
"### Custom Descriptions:"
)
xclip_textbox = gr.Textbox(lines=12, placeholder="Edit the descriptions here", visible=False)
# ai_explanation = gr.Image(type="numpy", visible=True, show_label=False, height=500)
custom_explanation = gr.HTML()
gr.HTML("<br>")
image_gallery.select(update_selected_image, inputs=None, outputs=[image_label, org_image, xclip_pred_label, xclip_explanation, current_image, xclip_textbox])
xclip_edit_button.click(on_edit_button_click_xclip, inputs=[], outputs=[xclip_textbox, custom_explanation])
xclip_predict_button.click(on_predict_button_click_xclip, inputs=[xclip_textbox], outputs=[xclip_textbox, xclip_pred_label, xclip_explanation, custom_pred_label, custom_explanation])
demo.launch()