CHM-Corr / model /base /correlation.py
taesiri's picture
added CHM classification
d526dbf
r""" Provides functions that creates/manipulates correlation matrices """
import math
from torch.nn.functional import interpolate as resize
import torch
from .geometry import Geometry
class Correlation:
@classmethod
def mutual_nn_filter(cls, correlation_matrix, eps=1e-30):
r""" Mutual nearest neighbor filtering (Rocco et al. NeurIPS'18 )"""
corr_src_max = torch.max(correlation_matrix, dim=2, keepdim=True)[0]
corr_trg_max = torch.max(correlation_matrix, dim=1, keepdim=True)[0]
corr_src_max[corr_src_max == 0] += eps
corr_trg_max[corr_trg_max == 0] += eps
corr_src = correlation_matrix / corr_src_max
corr_trg = correlation_matrix / corr_trg_max
return correlation_matrix * (corr_src * corr_trg)
@classmethod
def build_correlation6d(self, src_feat, trg_feat, scales, conv2ds):
r""" Build 6-dimensional correlation tensor """
bsz, _, side, side = src_feat.size()
# Construct feature pairs with multiple scales
_src_feats = []
_trg_feats = []
for scale, conv in zip(scales, conv2ds):
s = (round(side * math.sqrt(scale)),) * 2
_src_feat = conv(resize(src_feat, s, mode='bilinear', align_corners=True))
_trg_feat = conv(resize(trg_feat, s, mode='bilinear', align_corners=True))
_src_feats.append(_src_feat)
_trg_feats.append(_trg_feat)
# Build multiple 4-dimensional correlation tensor
corr6d = []
for src_feat in _src_feats:
ch = src_feat.size(1)
src_side = src_feat.size(-1)
src_feat = src_feat.view(bsz, ch, -1).transpose(1, 2)
src_norm = src_feat.norm(p=2, dim=2, keepdim=True)
for trg_feat in _trg_feats:
trg_side = trg_feat.size(-1)
trg_feat = trg_feat.view(bsz, ch, -1)
trg_norm = trg_feat.norm(p=2, dim=1, keepdim=True)
correlation = torch.bmm(src_feat, trg_feat) / torch.bmm(src_norm, trg_norm)
correlation = correlation.view(bsz, src_side, src_side, trg_side, trg_side).contiguous()
corr6d.append(correlation)
# Resize the spatial sizes of the 4D tensors to the same size
for idx, correlation in enumerate(corr6d):
corr6d[idx] = Geometry.interpolate4d(correlation, [side, side])
# Build 6-dimensional correlation tensor
corr6d = torch.stack(corr6d).view(len(scales), len(scales),
bsz, side, side, side, side).permute(2, 0, 1, 3, 4, 5, 6)
return corr6d.clamp(min=0)