File size: 1,638 Bytes
d526dbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
r""" Conovlutional Hough matching layers """
import torch.nn as nn
import torch
from .base.correlation import Correlation
from .base.geometry import Geometry
from .base.chm import CHM4d, CHM6d
class CHMLearner(nn.Module):
def __init__(self, ktype, feat_dim):
super(CHMLearner, self).__init__()
# Scale-wise feature transformation
self.scales = [0.5, 1, 2]
self.conv2ds = nn.ModuleList([nn.Conv2d(feat_dim, feat_dim // 4, kernel_size=3, padding=1, bias=False) for _ in self.scales])
# CHM layers
ksz_translation = 5
ksz_scale = 3
self.chm6d = CHM6d(1, 1, ksz_scale, ksz_translation, ktype)
self.chm4d = CHM4d(1, 1, ksz_translation, ktype, bias=True)
# Activations
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
self.softplus = nn.Softplus()
def forward(self, src_feat, trg_feat):
corr = Correlation.build_correlation6d(src_feat, trg_feat, self.scales, self.conv2ds).unsqueeze(1)
bsz, ch, s, s, h, w, h, w = corr.size()
# CHM layer (6D)
corr = self.chm6d(corr)
corr = self.sigmoid(corr)
# Scale-space maxpool
corr = corr.view(bsz, -1, h, w, h, w).max(dim=1)[0]
corr = Geometry.interpolate4d(corr, [h * 2, w * 2]).unsqueeze(1)
# CHM layer (4D)
corr = self.chm4d(corr).squeeze(1)
# To ensure non-negative vote scores & soft cyclic constraints
corr = self.softplus(corr)
corr = Correlation.mutual_nn_filter(corr.view(bsz, corr.size(-1) ** 2, corr.size(-1) ** 2).contiguous())
return corr
|