Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
from PIL import Image | |
from gradio_app.utils import rgba_to_rgb, simple_remove | |
from gradio_app.custom_models.utils import load_pipeline | |
from scripts.utils import rotate_normals_torch | |
from scripts.all_typing import * | |
training_config = "gradio_app/custom_models/image2normal.yaml" | |
checkpoint_path = "ckpt/image2normal/unet_state_dict.pth" | |
trainer, pipeline = load_pipeline(training_config, checkpoint_path) | |
def predict_normals(image: List[Image.Image], guidance_scale=2., do_rotate=True, num_inference_steps=30, **kwargs): | |
pipeline.enable_model_cpu_offload() | |
img_list = image if isinstance(image, list) else [image] | |
img_list = [rgba_to_rgb(i) if i.mode == 'RGBA' else i for i in img_list] | |
images = trainer.pipeline_forward( | |
pipeline=pipeline, | |
image=img_list, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
**kwargs | |
).images | |
images = simple_remove(images) | |
if do_rotate and len(images) > 1: | |
images = rotate_normals_torch(images, return_types='pil') | |
return images |