Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
model = AutoModelForSeq2SeqLM.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality") | |
tokenizer = AutoTokenizer.from_pretrained(""ramsrigouthamg/t5-large-paraphraser-diverse-high-quality") | |
device = torch.device("cude" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
def generate_text(inp): | |
text = "paraphrase: "+context + " </s>" | |
context = inp | |
encoding = tokenizer.encode_plus(text, max_length=256, padding=True, return_tensors="pt") | |
input_ids, attention_mask = encoding["input_ids"].to(device), encoding["attention_mask"].to(device_ | |
model.eval() | |
diverse_beams_output = model.generate( | |
input_ids = input_ids, attention_mask = max_length=256, early_stopping = True, num_beams = 5, num_beam_groups = 5, num_return_sequences = 5, diversity_penalty = 0,70) | |
sent = tokenizer.decode(diverse_beams_outputs[0], skip_special_tokens = True, clean_up_tokenization_spaces = True) | |
return sent | |
output_text = gr.outputs.Textbox() | |
gr.Interface(generate_text, "textbox", output_text).launch(inline=False) |