File size: 8,656 Bytes
cfd68c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53eb3b1
cfd68c2
 
9db446f
 
 
cfd68c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import base64
from io import BytesIO
import tempfile
import os
from pathlib import Path
import shutil
from openpyxl import Workbook, load_workbook

# Load YOLOv8 model
model = YOLO("best.pt")

# Create directories if not present
uploaded_folder = Path('Uploaded_Picture')
predicted_folder = Path('Predicted_Picture')
uploaded_folder.mkdir(parents=True, exist_ok=True)
predicted_folder.mkdir(parents=True, exist_ok=True)

# Path for Excel database file
xlsx_db_file = Path('patient_predictions.xlsx')

# Initialize Excel database file if not present
if not xlsx_db_file.exists():
    workbook = Workbook()
    sheet = workbook.active
    sheet.title = "Predictions"
    sheet.append(["Name", "Age", "Medical Record", "Sex", "Result", "Image Path"])
    workbook.save(xlsx_db_file)

def predict_image(input_image, name, age, medical_record, sex):
    if input_image is None:
        return None, "Please Input The Image"

    # Convert Gradio input image (PIL Image) to numpy array
    image_np = np.array(input_image)

    # Ensure the image is in the correct format
    if len(image_np.shape) == 2:  # grayscale to RGB
        image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
    elif image_np.shape[2] == 4:  # RGBA to RGB
        image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)

    # Perform prediction
    results = model(image_np)

    # Draw bounding boxes on the image
    image_with_boxes = image_np.copy()
    raw_predictions = []

    if results[0].boxes:
        # Sort the results by confidence and take the highest confidence one
        highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item())

        # Determine the label based on the class index
        class_index = highest_confidence_result.cls.item()
        if class_index == 0:
            label = "Normal"
            color = (0, 255, 0)  # Green for Normal
        elif class_index == 1:
            label = "Cataract"
            color = (255, 0, 0)  # Red for Cataract

        confidence = highest_confidence_result.conf.item()
        xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0])

        # Calculate the average of box width and height
        box_width = xmax - xmin
        box_height = ymax - ymin
        avg_dimension = (box_width + box_height) / 2
        
        # Calculate the circle radius as 1/12 of the average dimension
        radius = int(avg_dimension / 12)
        
        # Calculate the center of the bounding box
        center_x = int((xmin + xmax) / 2)
        center_y = int((ymin + ymax) / 2)
        
        # Draw the circle at the center of the bounding box with the color corresponding to the label
        cv2.circle(image_with_boxes, (center_x, center_y), radius, color, 2)

        # Enlarge font scale and thickness
        font_scale = 1.0
        thickness = 2
        
        # Calculate label background size
        (text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
        cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
        
        # Put the label text with black background
        cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
        
        raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Circle Center: [{center_x}, {center_y}], Radius: {radius}")

    raw_predictions_str = "\n".join(raw_predictions)
    
    # Convert to PIL image for further processing
    pil_image_with_boxes = Image.fromarray(image_with_boxes)

    # Add text and watermark
    pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label)
    
    # Save images to directories
    image_name = f"{name}-{age}-{sex}-{medical_record}.png"
    input_image.save(uploaded_folder / image_name)
    pil_image_with_boxes.save(predicted_folder / image_name)
    
    # Convert the predicted image to base64 for embedding in the XLSX file
    buffered = BytesIO()
    pil_image_with_boxes.save(buffered, format="PNG")
    predicted_image_base64 = base64.b64encode(buffered.getvalue()).decode()

    # Append the prediction to the XLSX database
    append_patient_info_to_xlsx(name, age, medical_record, sex, label, image_name)
    
    return pil_image_with_boxes, raw_predictions_str

def add_watermark(image):
    try:
        logo = Image.open('image-logo.png').convert("RGBA")
        image = image.convert("RGBA")
        basewidth = 100
        wpercent = (basewidth / float(logo.size[0]))
        hsize = int((float(wpercent) * logo.size[1]))
        logo = logo.resize((basewidth, hsize), Image.LANCZOS)
        position = (image.width - logo.width - 10, image.height - logo.height - 10)
        transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
        transparent.paste(image, (0, 0))
        transparent.paste(logo, position, mask=logo)
        return transparent.convert("RGB")
    except Exception as e:
        print(f"Error adding watermark: {e}")
        return image

def add_text_and_watermark(image, name, age, medical_record, sex, label):
    draw = ImageDraw.Draw(image)
    font_size = 24
    try:
        font = ImageFont.truetype("font.ttf", size=font_size)
    except IOError:
        font = ImageFont.load_default()
        print("Error: cannot open resource, using default font.")

    text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}"
    text_bbox = draw.textbbox((0, 0), text, font=font)
    text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
    text_x = 20
    text_y = 40
    padding = 10
    draw.rectangle([text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding], fill="black")
    draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)

    image_with_watermark = add_watermark(image)
    return image_with_watermark

def append_patient_info_to_xlsx(name, age, medical_record, sex, result, image_path):
    if not xlsx_db_file.exists():
        workbook = Workbook()
        sheet = workbook.active
        sheet.title = "Predictions"
        sheet.append(["Name", "Age", "Medical Record", "Sex", "Result", "Image Path"])
        workbook.save(xlsx_db_file)
    
    workbook = load_workbook(xlsx_db_file)
    sheet = workbook.active
    sheet.append([name, age, medical_record, sex, result, str(image_path)])
    workbook.save(xlsx_db_file)

    return str(xlsx_db_file)

def download_folder(folder):
    zip_path = os.path.join(tempfile.gettempdir(), f"{folder}.zip")
    shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder)
    return zip_path

def interface(name, age, medical_record, sex, input_image):
    if input_image is None:
        return None, "Please upload an image.", None

    output_image, raw_result = predict_image(input_image, name, age, medical_record, sex)
    
    return output_image, raw_result, str(xlsx_db_file)

def download_predicted_folder():
    return download_folder(predicted_folder)

def download_uploaded_folder():
    return download_folder(uploaded_folder)

with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# Cataract Detection System")
        gr.Markdown("Upload an image to detect cataract and add patient details.")
        gr.Markdown("This application uses YOLOv8 with mAP=0.981")
    
    with gr.Column():
        name = gr.Textbox(label="Name")
        age = gr.Number(label="Age")
        medical_record = gr.Number(label="Medical Record")
        sex = gr.Radio(["Male", "Female"], label="Sex")
        input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB")

    with gr.Column():
        submit_btn = gr.Button("Submit")
        output_image = gr.Image(type="pil", label="Predicted Image")
        raw_result = gr.Textbox(label="Raw Result", interactive=False)

    submit_btn.click(fn=interface, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result])

    with gr.Row():
        download_uploaded_btn = gr.Button("Download Uploaded Folder")
        download_predicted_btn = gr.Button("Download Predicted Folder")

    download_uploaded_btn.click(fn=download_uploaded_folder, inputs=[], outputs=gr.File())
    download_predicted_btn.click(fn=download_predicted_folder, inputs=[], outputs=gr.File())

demo.launch()