File size: 8,656 Bytes
cfd68c2 53eb3b1 cfd68c2 9db446f cfd68c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import base64
from io import BytesIO
import tempfile
import os
from pathlib import Path
import shutil
from openpyxl import Workbook, load_workbook
# Load YOLOv8 model
model = YOLO("best.pt")
# Create directories if not present
uploaded_folder = Path('Uploaded_Picture')
predicted_folder = Path('Predicted_Picture')
uploaded_folder.mkdir(parents=True, exist_ok=True)
predicted_folder.mkdir(parents=True, exist_ok=True)
# Path for Excel database file
xlsx_db_file = Path('patient_predictions.xlsx')
# Initialize Excel database file if not present
if not xlsx_db_file.exists():
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
sheet.append(["Name", "Age", "Medical Record", "Sex", "Result", "Image Path"])
workbook.save(xlsx_db_file)
def predict_image(input_image, name, age, medical_record, sex):
if input_image is None:
return None, "Please Input The Image"
# Convert Gradio input image (PIL Image) to numpy array
image_np = np.array(input_image)
# Ensure the image is in the correct format
if len(image_np.shape) == 2: # grayscale to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
elif image_np.shape[2] == 4: # RGBA to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
# Perform prediction
results = model(image_np)
# Draw bounding boxes on the image
image_with_boxes = image_np.copy()
raw_predictions = []
if results[0].boxes:
# Sort the results by confidence and take the highest confidence one
highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item())
# Determine the label based on the class index
class_index = highest_confidence_result.cls.item()
if class_index == 0:
label = "Normal"
color = (0, 255, 0) # Green for Normal
elif class_index == 1:
label = "Cataract"
color = (255, 0, 0) # Red for Cataract
confidence = highest_confidence_result.conf.item()
xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0])
# Calculate the average of box width and height
box_width = xmax - xmin
box_height = ymax - ymin
avg_dimension = (box_width + box_height) / 2
# Calculate the circle radius as 1/12 of the average dimension
radius = int(avg_dimension / 12)
# Calculate the center of the bounding box
center_x = int((xmin + xmax) / 2)
center_y = int((ymin + ymax) / 2)
# Draw the circle at the center of the bounding box with the color corresponding to the label
cv2.circle(image_with_boxes, (center_x, center_y), radius, color, 2)
# Enlarge font scale and thickness
font_scale = 1.0
thickness = 2
# Calculate label background size
(text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
# Put the label text with black background
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Circle Center: [{center_x}, {center_y}], Radius: {radius}")
raw_predictions_str = "\n".join(raw_predictions)
# Convert to PIL image for further processing
pil_image_with_boxes = Image.fromarray(image_with_boxes)
# Add text and watermark
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label)
# Save images to directories
image_name = f"{name}-{age}-{sex}-{medical_record}.png"
input_image.save(uploaded_folder / image_name)
pil_image_with_boxes.save(predicted_folder / image_name)
# Convert the predicted image to base64 for embedding in the XLSX file
buffered = BytesIO()
pil_image_with_boxes.save(buffered, format="PNG")
predicted_image_base64 = base64.b64encode(buffered.getvalue()).decode()
# Append the prediction to the XLSX database
append_patient_info_to_xlsx(name, age, medical_record, sex, label, image_name)
return pil_image_with_boxes, raw_predictions_str
def add_watermark(image):
try:
logo = Image.open('image-logo.png').convert("RGBA")
image = image.convert("RGBA")
basewidth = 100
wpercent = (basewidth / float(logo.size[0]))
hsize = int((float(wpercent) * logo.size[1]))
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
position = (image.width - logo.width - 10, image.height - logo.height - 10)
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
transparent.paste(image, (0, 0))
transparent.paste(logo, position, mask=logo)
return transparent.convert("RGB")
except Exception as e:
print(f"Error adding watermark: {e}")
return image
def add_text_and_watermark(image, name, age, medical_record, sex, label):
draw = ImageDraw.Draw(image)
font_size = 24
try:
font = ImageFont.truetype("font.ttf", size=font_size)
except IOError:
font = ImageFont.load_default()
print("Error: cannot open resource, using default font.")
text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}"
text_bbox = draw.textbbox((0, 0), text, font=font)
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
text_x = 20
text_y = 40
padding = 10
draw.rectangle([text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding], fill="black")
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
image_with_watermark = add_watermark(image)
return image_with_watermark
def append_patient_info_to_xlsx(name, age, medical_record, sex, result, image_path):
if not xlsx_db_file.exists():
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
sheet.append(["Name", "Age", "Medical Record", "Sex", "Result", "Image Path"])
workbook.save(xlsx_db_file)
workbook = load_workbook(xlsx_db_file)
sheet = workbook.active
sheet.append([name, age, medical_record, sex, result, str(image_path)])
workbook.save(xlsx_db_file)
return str(xlsx_db_file)
def download_folder(folder):
zip_path = os.path.join(tempfile.gettempdir(), f"{folder}.zip")
shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder)
return zip_path
def interface(name, age, medical_record, sex, input_image):
if input_image is None:
return None, "Please upload an image.", None
output_image, raw_result = predict_image(input_image, name, age, medical_record, sex)
return output_image, raw_result, str(xlsx_db_file)
def download_predicted_folder():
return download_folder(predicted_folder)
def download_uploaded_folder():
return download_folder(uploaded_folder)
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# Cataract Detection System")
gr.Markdown("Upload an image to detect cataract and add patient details.")
gr.Markdown("This application uses YOLOv8 with mAP=0.981")
with gr.Column():
name = gr.Textbox(label="Name")
age = gr.Number(label="Age")
medical_record = gr.Number(label="Medical Record")
sex = gr.Radio(["Male", "Female"], label="Sex")
input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB")
with gr.Column():
submit_btn = gr.Button("Submit")
output_image = gr.Image(type="pil", label="Predicted Image")
raw_result = gr.Textbox(label="Raw Result", interactive=False)
submit_btn.click(fn=interface, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result])
with gr.Row():
download_uploaded_btn = gr.Button("Download Uploaded Folder")
download_predicted_btn = gr.Button("Download Predicted Folder")
download_uploaded_btn.click(fn=download_uploaded_folder, inputs=[], outputs=gr.File())
download_predicted_btn.click(fn=download_predicted_folder, inputs=[], outputs=gr.File())
demo.launch() |