Spaces:
Sleeping
Sleeping
ariankhalfani
commited on
Commit
•
22a68d2
1
Parent(s):
822a6f7
Update app2.py
Browse files
app2.py
CHANGED
@@ -3,10 +3,12 @@ from ultralytics import YOLO
|
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
|
|
|
6 |
import os
|
7 |
from pathlib import Path
|
8 |
import shutil
|
9 |
-
import tempfile
|
10 |
|
11 |
# Load YOLOv8 model
|
12 |
model = YOLO("best.pt")
|
@@ -17,8 +19,13 @@ predicted_folder = Path('Predicted_Picture')
|
|
17 |
uploaded_folder.mkdir(parents=True, exist_ok=True)
|
18 |
predicted_folder.mkdir(parents=True, exist_ok=True)
|
19 |
|
20 |
-
#
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def predict_image(input_image, name, age, medical_record, sex):
|
24 |
if input_image is None:
|
@@ -36,41 +43,40 @@ def predict_image(input_image, name, age, medical_record, sex):
|
|
36 |
# Perform prediction
|
37 |
results = model(image_np)
|
38 |
|
39 |
-
# Draw bounding boxes
|
40 |
image_with_boxes = image_np.copy()
|
41 |
raw_predictions = []
|
42 |
|
43 |
if results[0].boxes:
|
|
|
44 |
highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item())
|
|
|
|
|
45 |
class_index = highest_confidence_result.cls.item()
|
46 |
if class_index == 0:
|
47 |
label = "Immature"
|
48 |
-
color = (0, 255, 255)
|
49 |
elif class_index == 1:
|
50 |
label = "Mature"
|
51 |
-
color = (255, 0, 0)
|
52 |
else:
|
53 |
label = "Normal"
|
54 |
-
color = (0, 255, 0)
|
55 |
|
56 |
confidence = highest_confidence_result.conf.item()
|
57 |
xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0])
|
58 |
|
59 |
# Draw the bounding box
|
60 |
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
|
61 |
-
|
62 |
-
# Draw the white circle in the center of the bounding box
|
63 |
-
box_width = xmax - xmin
|
64 |
-
box_height = ymax - ymin
|
65 |
-
center_x = xmin + box_width // 2
|
66 |
-
center_y = ymin + box_height // 2
|
67 |
-
radius = int((box_width + box_height) / 2 / 12)
|
68 |
-
cv2.circle(image_with_boxes, (center_x, center_y), radius, (255, 255, 255), 2)
|
69 |
|
70 |
# Enlarge font scale and thickness
|
71 |
font_scale = 1.0
|
72 |
thickness = 2
|
73 |
|
|
|
|
|
|
|
|
|
74 |
# Put the label text with black background
|
75 |
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
|
76 |
|
@@ -89,13 +95,47 @@ def predict_image(input_image, name, age, medical_record, sex):
|
|
89 |
input_image.save(uploaded_folder / image_name)
|
90 |
pil_image_with_boxes.save(predicted_folder / image_name)
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
return pil_image_with_boxes, raw_predictions_str
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
# Function to add text and watermark
|
95 |
def add_text_and_watermark(image, name, age, medical_record, sex, label):
|
96 |
draw = ImageDraw.Draw(image)
|
97 |
|
98 |
-
|
|
|
99 |
try:
|
100 |
font = ImageFont.truetype("font.ttf", size=font_size)
|
101 |
except IOError:
|
@@ -103,48 +143,75 @@ def add_text_and_watermark(image, name, age, medical_record, sex, label):
|
|
103 |
print("Error: cannot open resource, using default font.")
|
104 |
|
105 |
text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}"
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
107 |
padding = 10
|
108 |
|
109 |
# Draw a filled rectangle for the background
|
110 |
draw.rectangle(
|
111 |
-
[text_x - padding, text_y - padding, text_x +
|
112 |
fill="black"
|
113 |
)
|
114 |
|
115 |
# Draw text on top of the rectangle
|
116 |
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
# Function to save patient info in HTML and accumulate data
|
121 |
-
def save_patient_info_to_html(name, age, medical_record, sex, result):
|
122 |
-
global patient_data
|
123 |
-
new_data = f"<p><strong>Name:</strong> {name}, <strong>Age:</strong> {age}, <strong>Medical Record:</strong> {medical_record}, <strong>Sex:</strong> {sex}, <strong>Result:</strong> {result}</p>"
|
124 |
-
patient_data.append(new_data)
|
125 |
-
|
126 |
-
html_content = f"""
|
127 |
-
<html>
|
128 |
-
<body>
|
129 |
-
<h1>Patient Information</h1>
|
130 |
-
{''.join(patient_data)}
|
131 |
-
</body>
|
132 |
-
</html>
|
133 |
-
"""
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
|
|
140 |
|
141 |
# Function to download the folders
|
142 |
-
def download_folder(
|
143 |
-
zip_path = os.path.join(tempfile.gettempdir(), f"{
|
144 |
-
|
|
|
|
|
|
|
145 |
return zip_path
|
146 |
|
147 |
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
with gr.Blocks() as demo:
|
149 |
with gr.Column():
|
150 |
gr.Markdown("# Cataract Detection System")
|
@@ -170,18 +237,16 @@ with gr.Blocks() as demo:
|
|
170 |
download_uploaded_btn = gr.Button("Download Uploaded Images")
|
171 |
download_predicted_btn = gr.Button("Download Predicted Images")
|
172 |
|
|
|
173 |
patient_info_file = gr.File(label="Patient Information HTML File")
|
174 |
uploaded_folder_file = gr.File(label="Uploaded Images Zip File")
|
175 |
predicted_folder_file = gr.File(label="Predicted Images Zip File")
|
176 |
|
177 |
-
#
|
178 |
-
|
179 |
-
predicted_folder_state = gr.State(str(predicted_folder))
|
180 |
-
|
181 |
-
submit_btn.click(fn=predict_image, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result])
|
182 |
download_html_btn.click(fn=save_patient_info_to_html, inputs=[name, age, medical_record, sex, raw_result], outputs=patient_info_file)
|
183 |
-
download_uploaded_btn.click(fn=
|
184 |
-
download_predicted_btn.click(fn=
|
185 |
|
186 |
# Launch Gradio app
|
187 |
demo.launch()
|
|
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
from PIL import Image, ImageDraw, ImageFont
|
6 |
+
import base64
|
7 |
+
from io import BytesIO
|
8 |
+
import tempfile
|
9 |
import os
|
10 |
from pathlib import Path
|
11 |
import shutil
|
|
|
12 |
|
13 |
# Load YOLOv8 model
|
14 |
model = YOLO("best.pt")
|
|
|
19 |
uploaded_folder.mkdir(parents=True, exist_ok=True)
|
20 |
predicted_folder.mkdir(parents=True, exist_ok=True)
|
21 |
|
22 |
+
# Path for HTML database file
|
23 |
+
html_db_file = Path('patient_predictions.html')
|
24 |
+
|
25 |
+
# Initialize HTML database file if not present
|
26 |
+
if not html_db_file.exists():
|
27 |
+
with open(html_db_file, 'w') as f:
|
28 |
+
f.write("<html><body><h1>Patient Prediction Database</h1>")
|
29 |
|
30 |
def predict_image(input_image, name, age, medical_record, sex):
|
31 |
if input_image is None:
|
|
|
43 |
# Perform prediction
|
44 |
results = model(image_np)
|
45 |
|
46 |
+
# Draw bounding boxes on the image
|
47 |
image_with_boxes = image_np.copy()
|
48 |
raw_predictions = []
|
49 |
|
50 |
if results[0].boxes:
|
51 |
+
# Sort the results by confidence and take the highest confidence one
|
52 |
highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item())
|
53 |
+
|
54 |
+
# Determine the label based on the class index
|
55 |
class_index = highest_confidence_result.cls.item()
|
56 |
if class_index == 0:
|
57 |
label = "Immature"
|
58 |
+
color = (0, 255, 255) # Yellow for Immature
|
59 |
elif class_index == 1:
|
60 |
label = "Mature"
|
61 |
+
color = (255, 0, 0) # Red for Mature
|
62 |
else:
|
63 |
label = "Normal"
|
64 |
+
color = (0, 255, 0) # Green for Normal
|
65 |
|
66 |
confidence = highest_confidence_result.conf.item()
|
67 |
xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0])
|
68 |
|
69 |
# Draw the bounding box
|
70 |
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Enlarge font scale and thickness
|
73 |
font_scale = 1.0
|
74 |
thickness = 2
|
75 |
|
76 |
+
# Calculate label background size
|
77 |
+
(text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
|
78 |
+
cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
|
79 |
+
|
80 |
# Put the label text with black background
|
81 |
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
|
82 |
|
|
|
95 |
input_image.save(uploaded_folder / image_name)
|
96 |
pil_image_with_boxes.save(predicted_folder / image_name)
|
97 |
|
98 |
+
# Convert the predicted image to base64 for embedding in HTML
|
99 |
+
buffered = BytesIO()
|
100 |
+
pil_image_with_boxes.save(buffered, format="PNG")
|
101 |
+
predicted_image_base64 = base64.b64encode(buffered.getvalue()).decode()
|
102 |
+
|
103 |
+
# Append the prediction to the HTML database
|
104 |
+
append_patient_info_to_html(name, age, medical_record, sex, label, predicted_image_base64)
|
105 |
+
|
106 |
return pil_image_with_boxes, raw_predictions_str
|
107 |
|
108 |
+
# Function to add watermark
|
109 |
+
def add_watermark(image):
|
110 |
+
try:
|
111 |
+
logo = Image.open('image-logo.png').convert("RGBA")
|
112 |
+
image = image.convert("RGBA")
|
113 |
+
|
114 |
+
# Resize logo
|
115 |
+
basewidth = 100
|
116 |
+
wpercent = (basewidth / float(logo.size[0]))
|
117 |
+
hsize = int((float(wpercent) * logo.size[1]))
|
118 |
+
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
|
119 |
+
|
120 |
+
# Position logo
|
121 |
+
position = (image.width - logo.width - 10, image.height - logo.height - 10)
|
122 |
+
|
123 |
+
# Composite image
|
124 |
+
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
|
125 |
+
transparent.paste(image, (0, 0))
|
126 |
+
transparent.paste(logo, position, mask=logo)
|
127 |
+
|
128 |
+
return transparent.convert("RGB")
|
129 |
+
except Exception as e:
|
130 |
+
print(f"Error adding watermark: {e}")
|
131 |
+
return image
|
132 |
+
|
133 |
# Function to add text and watermark
|
134 |
def add_text_and_watermark(image, name, age, medical_record, sex, label):
|
135 |
draw = ImageDraw.Draw(image)
|
136 |
|
137 |
+
# Load a larger font (adjust the size as needed)
|
138 |
+
font_size = 24 # Example font size
|
139 |
try:
|
140 |
font = ImageFont.truetype("font.ttf", size=font_size)
|
141 |
except IOError:
|
|
|
143 |
print("Error: cannot open resource, using default font.")
|
144 |
|
145 |
text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}"
|
146 |
+
|
147 |
+
# Calculate text bounding box
|
148 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
149 |
+
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
|
150 |
+
text_x = 20
|
151 |
+
text_y = 40
|
152 |
padding = 10
|
153 |
|
154 |
# Draw a filled rectangle for the background
|
155 |
draw.rectangle(
|
156 |
+
[text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding],
|
157 |
fill="black"
|
158 |
)
|
159 |
|
160 |
# Draw text on top of the rectangle
|
161 |
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
|
162 |
|
163 |
+
# Add watermark to the image
|
164 |
+
image_with_watermark = add_watermark(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
return image_with_watermark
|
167 |
+
|
168 |
+
# Function to append patient info and image to HTML database
|
169 |
+
def append_patient_info_to_html(name, age, medical_record, sex, result, predicted_image_base64):
|
170 |
+
html_entry = f"""
|
171 |
+
<div>
|
172 |
+
<h2>Patient Information</h2>
|
173 |
+
<p><strong>Name:</strong> {name}</p>
|
174 |
+
<p><strong>Age:</strong> {age}</p>
|
175 |
+
<p><strong>Medical Record:</strong> {medical_record}</p>
|
176 |
+
<p><strong>Sex:</strong> {sex}</p>
|
177 |
+
<p><strong>Result:</strong> {result}</p>
|
178 |
+
<p><strong>Predicted Image:</strong></p>
|
179 |
+
<img src="data:image/png;base64,{predicted_image_base64}" alt="Predicted Image" width="300">
|
180 |
+
</div>
|
181 |
+
<hr>
|
182 |
+
"""
|
183 |
|
184 |
+
with open(html_db_file, 'a') as f:
|
185 |
+
f.write(html_entry)
|
186 |
|
187 |
# Function to download the folders
|
188 |
+
def download_folder(folder):
|
189 |
+
zip_path = os.path.join(tempfile.gettempdir(), f"{folder}.zip")
|
190 |
+
|
191 |
+
# Zip the folder
|
192 |
+
shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder)
|
193 |
+
|
194 |
return zip_path
|
195 |
|
196 |
# Gradio Interface
|
197 |
+
def interface(name, age, medical_record, sex, input_image):
|
198 |
+
if input_image is None:
|
199 |
+
return None, "Please upload an image.", None
|
200 |
+
|
201 |
+
output_image, raw_result = predict_image(input_image, name, age, medical_record, sex)
|
202 |
+
|
203 |
+
# Return the current state of the HTML file with all predictions
|
204 |
+
return output_image, raw_result, str(html_db_file)
|
205 |
+
|
206 |
+
# Download Functions
|
207 |
+
def download_predicted_folder():
|
208 |
+
return download_folder(predicted_folder)
|
209 |
+
|
210 |
+
def download_uploaded_folder():
|
211 |
+
return download_folder(uploaded_folder)
|
212 |
+
|
213 |
+
# Launch Gradio Interface
|
214 |
+
|
215 |
with gr.Blocks() as demo:
|
216 |
with gr.Column():
|
217 |
gr.Markdown("# Cataract Detection System")
|
|
|
237 |
download_uploaded_btn = gr.Button("Download Uploaded Images")
|
238 |
download_predicted_btn = gr.Button("Download Predicted Images")
|
239 |
|
240 |
+
# Add file download output components for the uploaded and predicted images
|
241 |
patient_info_file = gr.File(label="Patient Information HTML File")
|
242 |
uploaded_folder_file = gr.File(label="Uploaded Images Zip File")
|
243 |
predicted_folder_file = gr.File(label="Predicted Images Zip File")
|
244 |
|
245 |
+
# Connect functions with components
|
246 |
+
submit_btn.click(fn=interface, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result])
|
|
|
|
|
|
|
247 |
download_html_btn.click(fn=save_patient_info_to_html, inputs=[name, age, medical_record, sex, raw_result], outputs=patient_info_file)
|
248 |
+
download_uploaded_btn.click(fn=download_uploaded_folder, outputs=uploaded_folder_file)
|
249 |
+
download_predicted_btn.click(fn=download_predicted_folder, outputs=predicted_folder_file)
|
250 |
|
251 |
# Launch Gradio app
|
252 |
demo.launch()
|