Spaces:
Sleeping
Sleeping
ariankhalfani
commited on
Commit
•
1f8c223
1
Parent(s):
8b3a389
Create app4.py
Browse files
app4.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image, ImageDraw, ImageFont
|
6 |
+
import base64
|
7 |
+
from io import BytesIO
|
8 |
+
import zipfile
|
9 |
+
import os
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
# Load YOLOv8 model
|
13 |
+
model = YOLO("best.pt")
|
14 |
+
|
15 |
+
# Define paths for uploaded and predicted images
|
16 |
+
uploaded_folder = Path('Uploaded_Picture')
|
17 |
+
predicted_folder = Path('Predicted_Picture')
|
18 |
+
uploaded_folder.mkdir(parents=True, exist_ok=True)
|
19 |
+
predicted_folder.mkdir(parents=True, exist_ok=True)
|
20 |
+
|
21 |
+
# Path for HTML database file
|
22 |
+
html_db_file = Path('patient_predictions.html')
|
23 |
+
|
24 |
+
# Initialize HTML file if not present
|
25 |
+
if not html_db_file.exists():
|
26 |
+
with open(html_db_file, 'w') as f:
|
27 |
+
f.write("""
|
28 |
+
<html>
|
29 |
+
<head><title>Patient Prediction Database</title></head>
|
30 |
+
<body>
|
31 |
+
<h1>Patient Prediction Database</h1>
|
32 |
+
<table border="1" style="width:100%; border-collapse: collapse; text-align: center;">
|
33 |
+
<thead>
|
34 |
+
<tr>
|
35 |
+
<th>Name</th>
|
36 |
+
<th>Age</th>
|
37 |
+
<th>Medical Record</th>
|
38 |
+
<th>Sex</th>
|
39 |
+
<th>Result</th>
|
40 |
+
<th>Predicted Image</th>
|
41 |
+
</tr>
|
42 |
+
</thead>
|
43 |
+
<tbody>
|
44 |
+
""")
|
45 |
+
|
46 |
+
def predict_image(input_image, name, age, medical_record, sex):
|
47 |
+
# Ensure input image is provided
|
48 |
+
if input_image is None:
|
49 |
+
return None, "Please upload an image for prediction."
|
50 |
+
|
51 |
+
# Convert PIL image to NumPy array
|
52 |
+
image_np = np.array(input_image)
|
53 |
+
|
54 |
+
# Perform YOLO prediction
|
55 |
+
results = model(image_np)
|
56 |
+
image_with_boxes = image_np.copy()
|
57 |
+
label = "Unknown"
|
58 |
+
|
59 |
+
if results[0].boxes:
|
60 |
+
# Take the result with the highest confidence
|
61 |
+
best_result = max(results[0].boxes, key=lambda x: x.conf.item())
|
62 |
+
class_index = best_result.cls.item()
|
63 |
+
|
64 |
+
# Determine class label
|
65 |
+
if class_index == 0:
|
66 |
+
label = "Immature"
|
67 |
+
color = (0, 255, 255)
|
68 |
+
elif class_index == 1:
|
69 |
+
label = "Mature"
|
70 |
+
color = (255, 0, 0)
|
71 |
+
else:
|
72 |
+
label = "Normal"
|
73 |
+
color = (0, 255, 0)
|
74 |
+
|
75 |
+
confidence = best_result.conf.item()
|
76 |
+
xmin, ymin, xmax, ymax = map(int, best_result.xyxy[0])
|
77 |
+
|
78 |
+
# Draw bounding box and label on image
|
79 |
+
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
|
80 |
+
font_scale, thickness = 1.0, 2
|
81 |
+
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, color, thickness)
|
82 |
+
|
83 |
+
# Convert the annotated image back to PIL
|
84 |
+
pil_image_with_boxes = Image.fromarray(image_with_boxes)
|
85 |
+
|
86 |
+
# Save images to folders
|
87 |
+
image_name = f"{name}_{age}_{medical_record}_{sex}.png"
|
88 |
+
input_image.save(uploaded_folder / image_name)
|
89 |
+
pil_image_with_boxes.save(predicted_folder / image_name)
|
90 |
+
|
91 |
+
# Convert predicted image to base64 for embedding in HTML
|
92 |
+
buffered = BytesIO()
|
93 |
+
pil_image_with_boxes.save(buffered, format="PNG")
|
94 |
+
predicted_image_base64 = base64.b64encode(buffered.getvalue()).decode()
|
95 |
+
|
96 |
+
# Append patient information to HTML
|
97 |
+
append_patient_info_to_html(name, age, medical_record, sex, label, predicted_image_base64)
|
98 |
+
|
99 |
+
raw_prediction = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}"
|
100 |
+
|
101 |
+
return pil_image_with_boxes, raw_prediction
|
102 |
+
|
103 |
+
def append_patient_info_to_html(name, age, medical_record, sex, result, predicted_image_base64):
|
104 |
+
# Append a new patient entry to the HTML file
|
105 |
+
html_entry = f"""
|
106 |
+
<tr>
|
107 |
+
<td>{name}</td>
|
108 |
+
<td>{age}</td>
|
109 |
+
<td>{medical_record}</td>
|
110 |
+
<td>{sex}</td>
|
111 |
+
<td>{result}</td>
|
112 |
+
<td><img src="data:image/png;base64,{predicted_image_base64}" alt="Predicted Image" width="150"></td>
|
113 |
+
</tr>
|
114 |
+
"""
|
115 |
+
|
116 |
+
with open(html_db_file, 'a') as f:
|
117 |
+
f.write(html_entry)
|
118 |
+
|
119 |
+
# Close the HTML file after writing (for proper structure)
|
120 |
+
with open(html_db_file, 'a') as f:
|
121 |
+
f.write("</tbody></table></body></html>")
|
122 |
+
|
123 |
+
return str(html_db_file)
|
124 |
+
|
125 |
+
def download_uploaded_folder():
|
126 |
+
# Create a zip file of the uploaded folder
|
127 |
+
zip_path = 'uploaded_images.zip'
|
128 |
+
with zipfile.ZipFile(zip_path, 'w') as zf:
|
129 |
+
for file in uploaded_folder.iterdir():
|
130 |
+
zf.write(file, arcname=file.name)
|
131 |
+
return zip_path
|
132 |
+
|
133 |
+
def download_predicted_folder():
|
134 |
+
# Create a zip file of the predicted folder
|
135 |
+
zip_path = 'predicted_images.zip'
|
136 |
+
with zipfile.ZipFile(zip_path, 'w') as zf:
|
137 |
+
for file in predicted_folder.iterdir():
|
138 |
+
zf.write(file, arcname=file.name)
|
139 |
+
return zip_path
|
140 |
+
|
141 |
+
# Launch Gradio Interface
|
142 |
+
with gr.Blocks() as demo:
|
143 |
+
with gr.Column():
|
144 |
+
gr.Markdown("# Cataract Detection System")
|
145 |
+
gr.Markdown("Upload an image to detect cataract and add patient details.")
|
146 |
+
gr.Markdown("This application uses YOLOv8 with mAP=0.981")
|
147 |
+
|
148 |
+
with gr.Column():
|
149 |
+
name = gr.Textbox(label="Name")
|
150 |
+
age = gr.Number(label="Age")
|
151 |
+
medical_record = gr.Number(label="Medical Record")
|
152 |
+
sex = gr.Radio(["Male", "Female"], label="Sex")
|
153 |
+
input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB")
|
154 |
+
|
155 |
+
with gr.Column():
|
156 |
+
submit_btn = gr.Button("Submit")
|
157 |
+
output_image = gr.Image(type="pil", label="Predicted Image")
|
158 |
+
|
159 |
+
with gr.Row():
|
160 |
+
raw_result = gr.Textbox(label="Prediction Result")
|
161 |
+
|
162 |
+
with gr.Row():
|
163 |
+
download_html_btn = gr.Button("Download Patient Information (HTML)")
|
164 |
+
download_uploaded_btn = gr.Button("Download Uploaded Images")
|
165 |
+
download_predicted_btn = gr.Button("Download Predicted Images")
|
166 |
+
|
167 |
+
# Add file download output components for the uploaded and predicted images
|
168 |
+
patient_info_file = gr.File(label="Patient Information HTML File")
|
169 |
+
uploaded_folder_file = gr.File(label="Uploaded Images Zip File")
|
170 |
+
predicted_folder_file = gr.File(label="Predicted Images Zip File")
|
171 |
+
|
172 |
+
# Connect functions with components
|
173 |
+
submit_btn.click(fn=predict_image, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result])
|
174 |
+
download_html_btn.click(fn=append_patient_info_to_html, inputs=[name, age, medical_record, sex, raw_result], outputs=patient_info_file)
|
175 |
+
download_uploaded_btn.click(fn=download_uploaded_folder, outputs=uploaded_folder_file)
|
176 |
+
download_predicted_btn.click(fn=download_predicted_folder, outputs=predicted_folder_file)
|
177 |
+
|
178 |
+
# Launch Gradio app
|
179 |
+
demo.launch()
|