Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ultralytics import YOLO | |
import cv2 | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFont | |
import base64 | |
from io import BytesIO | |
import tempfile | |
import os | |
from pathlib import Path | |
import shutil | |
from openpyxl import Workbook, load_workbook | |
# Load YOLOv8 model | |
model = YOLO("best.pt") | |
# Create directories if not present | |
uploaded_folder = Path('Uploaded_Picture') | |
predicted_folder = Path('Predicted_Picture') | |
uploaded_folder.mkdir(parents=True, exist_ok=True) | |
predicted_folder.mkdir(parents=True, exist_ok=True) | |
# Path for Excel database file | |
xlsx_db_file = Path('patient_predictions.xlsx') | |
# Initialize Excel database file if not present | |
if not xlsx_db_file.exists(): | |
workbook = Workbook() | |
sheet = workbook.active | |
sheet.title = "Predictions" | |
sheet.append(["Name", "Age", "Medical Record", "Sex", "Result", "Image Path"]) | |
workbook.save(xlsx_db_file) | |
def predict_image(input_image, name, age, medical_record, sex): | |
if input_image is None: | |
return None, "Please Input The Image" | |
# Convert Gradio input image (PIL Image) to numpy array | |
image_np = np.array(input_image) | |
# Ensure the image is in the correct format | |
if len(image_np.shape) == 2: # grayscale to RGB | |
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB) | |
elif image_np.shape[2] == 4: # RGBA to RGB | |
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB) | |
# Perform prediction | |
results = model(image_np) | |
# Draw bounding boxes on the image | |
image_with_boxes = image_np.copy() | |
raw_predictions = [] | |
if results[0].boxes: | |
# Sort the results by confidence and take the highest confidence one | |
highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item()) | |
# Determine the label based on the class index | |
class_index = highest_confidence_result.cls.item() | |
if class_index == 0: | |
label = "Immature" | |
color = (0, 0, 255) # Blue for Immature | |
elif class_index == 1: | |
label = "Mature" | |
color = (255, 0, 0) # Red for Mature | |
else: | |
label = "Normal" | |
color = (0, 255, 0) # Green for Normal | |
confidence = highest_confidence_result.conf.item() | |
xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0]) | |
# Calculate the average of box width and height | |
box_width = xmax - xmin | |
box_height = ymax - ymin | |
avg_dimension = (box_width + box_height) / 2 | |
# Calculate the circle radius as 1/12 of the average dimension | |
radius = int(avg_dimension / 12) | |
# Calculate the center of the bounding box | |
center_x = int((xmin + xmax) / 2) | |
center_y = int((ymin + ymax) / 2) | |
# Draw the circle at the center of the bounding box with the color corresponding to the label | |
cv2.circle(image_with_boxes, (center_x, center_y), radius, color, 2) | |
# Enlarge font scale and thickness | |
font_scale = 1.0 | |
thickness = 2 | |
# Calculate label background size | |
(text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness) | |
cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED) | |
# Put the label text with black background | |
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness) | |
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Circle Center: [{center_x}, {center_y}], Radius: {radius}") | |
raw_predictions_str = "\n".join(raw_predictions) | |
# Convert to PIL image for further processing | |
pil_image_with_boxes = Image.fromarray(image_with_boxes) | |
# Add text and watermark | |
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label) | |
# Save images to directories | |
image_name = f"{name}-{age}-{sex}-{medical_record}.png" | |
input_image.save(uploaded_folder / image_name) | |
pil_image_with_boxes.save(predicted_folder / image_name) | |
# Convert the predicted image to base64 for embedding in the XLSX file | |
buffered = BytesIO() | |
pil_image_with_boxes.save(buffered, format="PNG") | |
predicted_image_base64 = base64.b64encode(buffered.getvalue()).decode() | |
# Append the prediction to the XLSX database | |
append_patient_info_to_xlsx(name, age, medical_record, sex, label, image_name) | |
return pil_image_with_boxes, raw_predictions_str | |
def add_watermark(image): | |
try: | |
logo = Image.open('image-logo.png').convert("RGBA") | |
image = image.convert("RGBA") | |
basewidth = 100 | |
wpercent = (basewidth / float(logo.size[0])) | |
hsize = int((float(wpercent) * logo.size[1])) | |
logo = logo.resize((basewidth, hsize), Image.LANCZOS) | |
position = (image.width - logo.width - 10, image.height - logo.height - 10) | |
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0)) | |
transparent.paste(image, (0, 0)) | |
transparent.paste(logo, position, mask=logo) | |
return transparent.convert("RGB") | |
except Exception as e: | |
print(f"Error adding watermark: {e}") | |
return image | |
def add_text_and_watermark(image, name, age, medical_record, sex, label): | |
draw = ImageDraw.Draw(image) | |
font_size = 24 | |
try: | |
font = ImageFont.truetype("font.ttf", size=font_size) | |
except IOError: | |
font = ImageFont.load_default() | |
print("Error: cannot open resource, using default font.") | |
text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}" | |
text_bbox = draw.textbbox((0, 0), text, font=font) | |
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1] | |
text_x = 20 | |
text_y = 40 | |
padding = 10 | |
draw.rectangle([text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding], fill="black") | |
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font) | |
image_with_watermark = add_watermark(image) | |
return image_with_watermark | |
def append_patient_info_to_xlsx(name, age, medical_record, sex, result, image_path): | |
if not xlsx_db_file.exists(): | |
workbook = Workbook() | |
sheet = workbook.active | |
sheet.title = "Predictions" | |
sheet.append(["Name", "Age", "Medical Record", "Sex", "Result", "Image Path"]) | |
workbook.save(xlsx_db_file) | |
workbook = load_workbook(xlsx_db_file) | |
sheet = workbook.active | |
sheet.append([name, age, medical_record, sex, result, str(image_path)]) | |
workbook.save(xlsx_db_file) | |
return str(xlsx_db_file) | |
def download_folder(folder): | |
zip_path = os.path.join(tempfile.gettempdir(), f"{folder}.zip") | |
shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder) | |
return zip_path | |
def interface(name, age, medical_record, sex, input_image): | |
if input_image is None: | |
return None, "Please upload an image.", None | |
output_image, raw_result = predict_image(input_image, name, age, medical_record, sex) | |
return output_image, raw_result, str(xlsx_db_file) | |
def download_predicted_folder(): | |
return download_folder(predicted_folder) | |
def download_uploaded_folder(): | |
return download_folder(uploaded_folder) | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("# Cataract Detection System") | |
gr.Markdown("Upload an image to detect cataract and add patient details.") | |
gr.Markdown("This application uses YOLOv8 with mAP=0.981") | |
with gr.Column(): | |
name = gr.Textbox(label="Name") | |
age = gr.Number(label="Age") | |
medical_record = gr.Number(label="Medical Record") | |
sex = gr.Radio(["Male", "Female"], label="Sex") | |
input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB") | |
with gr.Column(): | |
submit_btn = gr.Button("Submit") | |
output_image = gr.Image(type="pil", label="Predicted Image") | |
with gr.Row(): | |
raw_result = gr.Textbox(label="Prediction Result") | |
with gr.Row(): | |
download_xlsx_btn = gr.Button("Download Patient Information (XLSX)") | |
download_uploaded_btn = gr.Button("Download Uploaded Images") | |
download_predicted_btn = gr.Button("Download Predicted Images") | |
xlsx_file = gr.File(label="Patient Information XLSX File") | |
uploaded_folder_file = gr.File(label="Uploaded Images Zip File") | |
predicted_folder_file = gr.File(label="Predicted Images Zip File") | |
submit_btn.click(fn=interface, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result, xlsx_file]) | |
download_xlsx_btn.click(fn=lambda: str(xlsx_db_file), outputs=xlsx_file) | |
download_uploaded_btn.click(fn=download_uploaded_folder, outputs=uploaded_folder_file) | |
download_predicted_btn.click(fn=download_predicted_folder, outputs=predicted_folder_file) | |
demo.launch() |