ariankhalfani's picture
Update app.py
ae9edf6 verified
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import base64
from io import BytesIO
import tempfile
import os
from pathlib import Path
import shutil
from openpyxl import Workbook, load_workbook
# Load YOLOv8 model
model = YOLO("best.pt")
# Create directories if not present
uploaded_folder = Path('Uploaded_Picture')
predicted_folder = Path('Predicted_Picture')
uploaded_folder.mkdir(parents=True, exist_ok=True)
predicted_folder.mkdir(parents=True, exist_ok=True)
# Path for Excel database file
xlsx_db_file = Path('patient_predictions.xlsx')
# Initialize Excel database file if not present
if not xlsx_db_file.exists():
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
sheet.append(["Name", "Age", "Medical Record", "Sex", "Result", "Image Path"])
workbook.save(xlsx_db_file)
def predict_image(input_image, name, age, medical_record, sex):
if input_image is None:
return None, "Please Input The Image"
# Convert Gradio input image (PIL Image) to numpy array
image_np = np.array(input_image)
# Ensure the image is in the correct format
if len(image_np.shape) == 2: # grayscale to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
elif image_np.shape[2] == 4: # RGBA to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
# Perform prediction
results = model(image_np)
# Draw bounding boxes on the image
image_with_boxes = image_np.copy()
raw_predictions = []
if results[0].boxes:
# Sort the results by confidence and take the highest confidence one
highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item())
# Determine the label based on the class index
class_index = highest_confidence_result.cls.item()
if class_index == 0:
label = "Immature"
color = (0, 0, 255) # Blue for Immature
elif class_index == 1:
label = "Mature"
color = (255, 0, 0) # Red for Mature
else:
label = "Normal"
color = (0, 255, 0) # Green for Normal
confidence = highest_confidence_result.conf.item()
xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0])
# Calculate the average of box width and height
box_width = xmax - xmin
box_height = ymax - ymin
avg_dimension = (box_width + box_height) / 2
# Calculate the circle radius as 1/12 of the average dimension
radius = int(avg_dimension / 12)
# Calculate the center of the bounding box
center_x = int((xmin + xmax) / 2)
center_y = int((ymin + ymax) / 2)
# Draw the circle at the center of the bounding box with the color corresponding to the label
cv2.circle(image_with_boxes, (center_x, center_y), radius, color, 2)
# Enlarge font scale and thickness
font_scale = 1.0
thickness = 2
# Calculate label background size
(text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
# Put the label text with black background
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Circle Center: [{center_x}, {center_y}], Radius: {radius}")
raw_predictions_str = "\n".join(raw_predictions)
# Convert to PIL image for further processing
pil_image_with_boxes = Image.fromarray(image_with_boxes)
# Add text and watermark
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label)
# Save images to directories
image_name = f"{name}-{age}-{sex}-{medical_record}.png"
input_image.save(uploaded_folder / image_name)
pil_image_with_boxes.save(predicted_folder / image_name)
# Convert the predicted image to base64 for embedding in the XLSX file
buffered = BytesIO()
pil_image_with_boxes.save(buffered, format="PNG")
predicted_image_base64 = base64.b64encode(buffered.getvalue()).decode()
# Append the prediction to the XLSX database
append_patient_info_to_xlsx(name, age, medical_record, sex, label, image_name)
return pil_image_with_boxes, raw_predictions_str
def add_watermark(image):
try:
logo = Image.open('image-logo.png').convert("RGBA")
image = image.convert("RGBA")
basewidth = 100
wpercent = (basewidth / float(logo.size[0]))
hsize = int((float(wpercent) * logo.size[1]))
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
position = (image.width - logo.width - 10, image.height - logo.height - 10)
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
transparent.paste(image, (0, 0))
transparent.paste(logo, position, mask=logo)
return transparent.convert("RGB")
except Exception as e:
print(f"Error adding watermark: {e}")
return image
def add_text_and_watermark(image, name, age, medical_record, sex, label):
draw = ImageDraw.Draw(image)
font_size = 24
try:
font = ImageFont.truetype("font.ttf", size=font_size)
except IOError:
font = ImageFont.load_default()
print("Error: cannot open resource, using default font.")
text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}"
text_bbox = draw.textbbox((0, 0), text, font=font)
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
text_x = 20
text_y = 40
padding = 10
draw.rectangle([text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding], fill="black")
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
image_with_watermark = add_watermark(image)
return image_with_watermark
def append_patient_info_to_xlsx(name, age, medical_record, sex, result, image_path):
if not xlsx_db_file.exists():
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
sheet.append(["Name", "Age", "Medical Record", "Sex", "Result", "Image Path"])
workbook.save(xlsx_db_file)
workbook = load_workbook(xlsx_db_file)
sheet = workbook.active
sheet.append([name, age, medical_record, sex, result, str(image_path)])
workbook.save(xlsx_db_file)
return str(xlsx_db_file)
def download_folder(folder):
zip_path = os.path.join(tempfile.gettempdir(), f"{folder}.zip")
shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder)
return zip_path
def interface(name, age, medical_record, sex, input_image):
if input_image is None:
return None, "Please upload an image.", None
output_image, raw_result = predict_image(input_image, name, age, medical_record, sex)
return output_image, raw_result, str(xlsx_db_file)
def download_predicted_folder():
return download_folder(predicted_folder)
def download_uploaded_folder():
return download_folder(uploaded_folder)
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# Cataract Detection System")
gr.Markdown("Upload an image to detect cataract and add patient details.")
gr.Markdown("This application uses YOLOv8 with mAP=0.981")
with gr.Column():
name = gr.Textbox(label="Name")
age = gr.Number(label="Age")
medical_record = gr.Number(label="Medical Record")
sex = gr.Radio(["Male", "Female"], label="Sex")
input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB")
with gr.Column():
submit_btn = gr.Button("Submit")
output_image = gr.Image(type="pil", label="Predicted Image")
with gr.Row():
raw_result = gr.Textbox(label="Prediction Result")
with gr.Row():
download_xlsx_btn = gr.Button("Download Patient Information (XLSX)")
download_uploaded_btn = gr.Button("Download Uploaded Images")
download_predicted_btn = gr.Button("Download Predicted Images")
xlsx_file = gr.File(label="Patient Information XLSX File")
uploaded_folder_file = gr.File(label="Uploaded Images Zip File")
predicted_folder_file = gr.File(label="Predicted Images Zip File")
submit_btn.click(fn=interface, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result, xlsx_file])
download_xlsx_btn.click(fn=lambda: str(xlsx_db_file), outputs=xlsx_file)
download_uploaded_btn.click(fn=download_uploaded_folder, outputs=uploaded_folder_file)
download_predicted_btn.click(fn=download_predicted_folder, outputs=predicted_folder_file)
demo.launch()