ariankhalfani's picture
Update app.py
c5f9028 verified
raw
history blame
9.25 kB
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import sqlite3
import tempfile
import pandas as pd
# Load YOLOv8 model
model = YOLO("best.pt")
# Function to perform prediction
def predict_image(input_image, name, patient_id):
if input_image is None:
return None, "Please Input The Image"
# Convert Gradio input image (PIL Image) to numpy array
image_np = np.array(input_image)
# Ensure the image is in the correct format
if len(image_np.shape) == 2: # grayscale to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
elif image_np.shape[2] == 4: # RGBA to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
# Perform prediction
results = model(image_np)
# Draw bounding boxes on the image
image_with_boxes = image_np.copy()
raw_predictions = []
label = "Unknown" # Default label if no detection
if results[0].boxes:
for box in results[0].boxes:
# Get class index and confidence for each detection
class_index = box.cls.item()
confidence = box.conf.item()
# Determine the label based on the class index
if class_index == 0:
label = "Immature"
color = (0, 255, 255) # Yellow for Immature
elif class_index == 1:
label = "Mature"
color = (255, 0, 0) # Red for Mature
else:
label = "Normal"
color = (0, 255, 0) # Green for Normal
xmin, ymin, xmax, ymax = map(int, box.xyxy[0])
# Draw the bounding box
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
# Enlarge font scale and thickness
font_scale = 1.0
thickness = 2
# Calculate label background size
(text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
# Put the label text with black background
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")
raw_predictions_str = "\n".join(raw_predictions)
# Convert to PIL image for further processing
pil_image_with_boxes = Image.fromarray(image_with_boxes)
# Add text and watermark
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, patient_id, label)
return pil_image_with_boxes, raw_predictions_str
# Function to add watermark
def add_watermark(image):
try:
logo = Image.open('image-logo.png').convert("RGBA")
image = image.convert("RGBA")
# Resize logo
basewidth = 100
wpercent = (basewidth / float(logo.size[0]))
hsize = int((float(wpercent) * logo.size[1]))
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
# Position logo
position = (image.width - logo.width - 10, image.height - logo.height - 10)
# Composite image
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
transparent.paste(image, (0, 0))
transparent.paste(logo, position, mask=logo)
return transparent.convert("RGB")
except Exception as e:
print(f"Error adding watermark: {e}")
return image
# Function to add text and watermark
def add_text_and_watermark(image, name, patient_id, label):
draw = ImageDraw.Draw(image)
# Load a larger font (adjust the size as needed)
font_size = 48 # Example font size
try:
font = ImageFont.truetype("font.ttf", size=font_size)
except IOError:
font = ImageFont.load_default()
print("Error: cannot open resource, using default font.")
text = f"Name: {name}, ID: {patient_id}, Result: {label}"
# Calculate text bounding box
text_bbox = draw.textbbox((0, 0), text, font=font)
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
text_x = 20
text_y = 40
padding = 10
# Draw a filled rectangle for the background
draw.rectangle(
[text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding],
fill="black"
)
# Draw text on top of the rectangle
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
# Add watermark to the image
image_with_watermark = add_watermark(image)
return image_with_watermark
# Function to initialize the database
def init_db():
conn = sqlite3.connect('results.db')
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS results
(id INTEGER PRIMARY KEY, name TEXT, patient_id TEXT, input_image BLOB, predicted_image BLOB, result TEXT)''')
conn.commit()
conn.close()
# Function to submit result to the database
def submit_result(name, patient_id, input_image, predicted_image, result):
conn = sqlite3.connect('results.db')
c = conn.cursor()
input_image_np = np.array(input_image)
_, input_buffer = cv2.imencode('.png', cv2.cvtColor(input_image_np, cv2.COLOR_RGB2BGR))
input_image_bytes = input_buffer.tobytes()
predicted_image_np = np.array(predicted_image)
predicted_image_rgb = cv2.cvtColor(predicted_image_np, cv2.COLOR_RGB2BGR) # Ensure correct color conversion
_, predicted_buffer = cv2.imencode('.png', predicted_image_rgb)
predicted_image_bytes = predicted_buffer.tobytes()
c.execute("INSERT INTO results (name, patient_id, input_image, predicted_image, result) VALUES (?, ?, ?, ?, ?)",
(name, patient_id, input_image_bytes, predicted_image_bytes, result))
conn.commit()
conn.close()
return "Result submitted to database."
# Function to load and view database
def view_database():
conn = sqlite3.connect('results.db')
c = conn.cursor()
c.execute("SELECT * FROM results")
rows = c.fetchall()
conn.close()
# Convert to pandas DataFrame
df = pd.DataFrame(rows, columns=["ID", "Name", "Patient ID", "Input Image", "Predicted Image", "Result"])
return df
# Function to download database or image
def download_file(choice):
conn = sqlite3.connect('results.db')
c = conn.cursor()
if choice == "Database (.db)":
conn.close()
return 'results.db'
else:
c.execute("SELECT predicted_image FROM results ORDER BY id DESC LIMIT 1")
row = c.fetchone()
conn.close()
if row:
image_bytes = row[0]
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
temp_file.write(image_bytes)
temp_file.flush() # Ensure all data is written before closing
return temp_file.name
else:
conn.close()
raise FileNotFoundError("No images found in the database.")
# Initialize the database
init_db()
# Gradio Interface
def interface(name, patient_id, input_image):
if input_image is None:
return "Please upload an image."
output_image, raw_result = predict_image(input_image, name, patient_id)
submit_status = submit_result(name, patient_id, input_image, output_image, raw_result)
return output_image, raw_result, submit_status
# View Database Function
def view_db_interface():
df = view_database()
return df
# Download Function
def download_interface(choice):
try:
file_path = download_file(choice)
with open(file_path, "rb") as file:
return file.read(), file_path
except Exception as e:
return f"Error: {str(e)}", None
# Build Gradio Interface
app = gr.Blocks()
with app:
gr.Markdown("# Eye Condition Detection System")
with gr.Row():
with gr.Column():
name = gr.Textbox(label="Name")
patient_id = gr.Textbox(label="Patient ID")
input_image = gr.Image(label="Input Image", tool="editor", type="pil")
with gr.Column():
output_image = gr.Image(label="Predicted Image")
raw_result = gr.Textbox(label="Raw Predictions", lines=5)
submit_status = gr.Textbox(label="Submit Status")
predict_button = gr.Button("Predict")
predict_button.click(fn=interface, inputs=[name, patient_id, input_image], outputs=[output_image, raw_result, submit_status])
with gr.Row():
with gr.Column():
view_button = gr.Button("View Database")
download_choice = gr.Dropdown(label="Download Option", choices=["Database (.db)", "Predicted Image (.png)"])
download_button = gr.Button("Download")
view_button.click(fn=view_db_interface, inputs=[], outputs=[gr.Dataframe()])
download_button.click(fn=download_interface, inputs=[download_choice], outputs=[gr.File(), gr.Textbox()])
# Launch the Gradio app
app.launch()